活动小行星外大气层对散射光极化的影响以及通过地基测量估计其特性的可能性

IF 0.6 4区 物理与天体物理 Q4 ASTRONOMY & ASTROPHYSICS Solar System Research Pub Date : 2024-05-20 DOI:10.1134/s0038094623700016
E. V. Petrova
{"title":"活动小行星外大气层对散射光极化的影响以及通过地基测量估计其特性的可能性","authors":"E. V. Petrova","doi":"10.1134/s0038094623700016","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Celestial bodies which have orbital and physical characteristics typical of asteroids, but episodically exhibit the signs of cometary activity are of particular interest, because the knowledge of the nature of these bodies is necessary to understand the processes of how the Solar System formed and how water was delivered to the terrestrial planets. In the estimation of the properties of an exosphere of an active asteroid (AA) from remote-sensing data, polarimetry can play a prominent role, since the polarization of scattered light is sensitive to the properties of particles in the medium. Numerical simulations of the light scattering by particles in the exosphere around an AA have shown that, depending on the wavelength of the scattered light, the refractive index of particles, and their morphology, the light scattering in the exosphere may both weaken the polarization of light reflected by the surface and enhance it. At the same time, the spectral gradient of polarization may change both towards larger positive values and towards negative ones. At phase angles less than 30°, which are typical of observations of the Main-belt asteroids, the changes in the polarization induced by scattering in the exosphere are small and vary only slightly for particles of different properties. Nevertheless, if the polarizations of light reflected by an asteroid changes relative to the canonical values, this may indicate the presence of the exosphere. At larger phase angles, the influence of scattering in the exosphere on the polarization of an AA is more noticeable, which makes the use of polarimetry promising for studying activity of near-Earth asteroids. This effect should also be taken into account when estimating the albedo of an asteroid by the polarization maximum (according to the Umov law), if a manifestation of activity in this particular asteroid can be expected.</p>","PeriodicalId":778,"journal":{"name":"Solar System Research","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Influence of the Exosphere of an Active Asteroid on the Polarization of Scattered Light and the Possibility of Estimating Its Properties from Ground-Based Measurements\",\"authors\":\"E. V. Petrova\",\"doi\":\"10.1134/s0038094623700016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>Celestial bodies which have orbital and physical characteristics typical of asteroids, but episodically exhibit the signs of cometary activity are of particular interest, because the knowledge of the nature of these bodies is necessary to understand the processes of how the Solar System formed and how water was delivered to the terrestrial planets. In the estimation of the properties of an exosphere of an active asteroid (AA) from remote-sensing data, polarimetry can play a prominent role, since the polarization of scattered light is sensitive to the properties of particles in the medium. Numerical simulations of the light scattering by particles in the exosphere around an AA have shown that, depending on the wavelength of the scattered light, the refractive index of particles, and their morphology, the light scattering in the exosphere may both weaken the polarization of light reflected by the surface and enhance it. At the same time, the spectral gradient of polarization may change both towards larger positive values and towards negative ones. At phase angles less than 30°, which are typical of observations of the Main-belt asteroids, the changes in the polarization induced by scattering in the exosphere are small and vary only slightly for particles of different properties. Nevertheless, if the polarizations of light reflected by an asteroid changes relative to the canonical values, this may indicate the presence of the exosphere. At larger phase angles, the influence of scattering in the exosphere on the polarization of an AA is more noticeable, which makes the use of polarimetry promising for studying activity of near-Earth asteroids. This effect should also be taken into account when estimating the albedo of an asteroid by the polarization maximum (according to the Umov law), if a manifestation of activity in this particular asteroid can be expected.</p>\",\"PeriodicalId\":778,\"journal\":{\"name\":\"Solar System Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar System Research\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1134/s0038094623700016\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar System Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1134/s0038094623700016","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 具有小行星典型的轨道和物理特征,但偶尔表现出彗星活动迹象的天体特别引人关注,因为了解这些天体的性质对于了解太阳系是如何形成的以及水是如何被输送到陆地行星的过程十分必要。在根据遥感数据估计活动小行星(AA)外大气层的性质时,偏振测量法可以发挥重要作用,因为散射光的偏振对介质中粒子的性质非常敏感。对 AA 周围外大气层中颗粒的光散射进行的数值模拟表明,根据散射光的波长、颗粒的折射率及其形态,外大气层中的光散射既可能减弱表面反射光的偏振,也可能增强偏振。同时,偏振的光谱梯度既可能向较大的正值变化,也可能向负值变化。在相位角小于 30°的情况下(这是对主带小行星进行观测的典型情况),外大气层中的散射引起的偏振变化很小,而且对于不同性质的粒子来说变化也很小。不过,如果小行星反射光的偏振相对于标准值发生了变化,则可能表明存在外层。在相位角较大的情况下,外大气层的散射对 AA 偏振的影响更为明显,这使得利用偏振测量法研究近地小行星的活动大有可为。如果预计小行星会出现活动现象,那么在通过极化最大值(根据乌莫夫定律)估算小行星反照率时,也应考虑到这种影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Influence of the Exosphere of an Active Asteroid on the Polarization of Scattered Light and the Possibility of Estimating Its Properties from Ground-Based Measurements

Abstract

Celestial bodies which have orbital and physical characteristics typical of asteroids, but episodically exhibit the signs of cometary activity are of particular interest, because the knowledge of the nature of these bodies is necessary to understand the processes of how the Solar System formed and how water was delivered to the terrestrial planets. In the estimation of the properties of an exosphere of an active asteroid (AA) from remote-sensing data, polarimetry can play a prominent role, since the polarization of scattered light is sensitive to the properties of particles in the medium. Numerical simulations of the light scattering by particles in the exosphere around an AA have shown that, depending on the wavelength of the scattered light, the refractive index of particles, and their morphology, the light scattering in the exosphere may both weaken the polarization of light reflected by the surface and enhance it. At the same time, the spectral gradient of polarization may change both towards larger positive values and towards negative ones. At phase angles less than 30°, which are typical of observations of the Main-belt asteroids, the changes in the polarization induced by scattering in the exosphere are small and vary only slightly for particles of different properties. Nevertheless, if the polarizations of light reflected by an asteroid changes relative to the canonical values, this may indicate the presence of the exosphere. At larger phase angles, the influence of scattering in the exosphere on the polarization of an AA is more noticeable, which makes the use of polarimetry promising for studying activity of near-Earth asteroids. This effect should also be taken into account when estimating the albedo of an asteroid by the polarization maximum (according to the Umov law), if a manifestation of activity in this particular asteroid can be expected.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar System Research
Solar System Research 地学天文-天文与天体物理
CiteScore
1.60
自引率
33.30%
发文量
32
审稿时长
6-12 weeks
期刊介绍: Solar System Research publishes articles concerning the bodies of the Solar System, i.e., planets and their satellites, asteroids, comets, meteoric substances, and cosmic dust. The articles consider physics, dynamics and composition of these bodies, and techniques of their exploration. The journal addresses the problems of comparative planetology, physics of the planetary atmospheres and interiors, cosmochemistry, as well as planetary plasma environment and heliosphere, specifically those related to solar-planetary interactions. Attention is paid to studies of exoplanets and complex problems of the origin and evolution of planetary systems including the solar system, based on the results of astronomical observations, laboratory studies of meteorites, relevant theoretical approaches and mathematical modeling. Alongside with the original results of experimental and theoretical studies, the journal publishes scientific reviews in the field of planetary exploration, and notes on observational results.
期刊最新文献
Impact Craters on Earth with a Diameter of More than 200 km: Numerical Modeling Determining Optimal Parameters for Mercury’s Magnetospheric Current Systems from MESSENGER Observations Analysis of Water in the Regolith of the Moon Using the LASMA-LR Instrument During the Luna-27 Mission Propagation of Hydromagnetic Disturbance Waves and Gravitational Instability in a Magnetized Rotating Heat-Conducting Anisotropic Plasma On the Nature of Electrophone Phenomena Accompanying the Passage of Meteoric Bodies through the Earth’s Atmosphere
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1