{"title":"基于关联规则增强的动态图卷积网络的现场冷风机性能预测方法","authors":"Qiao Deng, Zhiwen Chen, Wanting Zhu, Zefan Li, Yifeng Yuan, Weihua Gui","doi":"10.1007/s12273-024-1136-3","DOIUrl":null,"url":null,"abstract":"<p>Accurately predicting the chiller coefficient of performance (COP) is essential for improving the energy efficiency of heating, ventilation, and air conditioning (HVAC) systems, significantly contributing to energy conservation in buildings. Traditional performance prediction methods often overlook the dynamic interaction among sensor variables and face challenges in using extensive historical data efficiently, which impedes accurate predictions. To overcome these challenges, this paper proposes an innovative on-site chiller performance prediction method employing a dynamic graph convolutional network (GCN) enhanced by association rules. The distinctive feature of this method is constructing an association graph bank containing static graphs in each operating mode by mining the association rules between various sensor variables in historical operating data. A real-time graph is created by analyzing the correlation between various sensor variables in the current operating data. This graph is fused online with the static graph in the current operating mode to obtain a dynamic graph used for feature extraction and training of GCN. The effectiveness of this method has been empirically confirmed through the operational data of an actual building chiller system. Comparative analysis with state-of-the-art methods highlights the superior performance of the proposed method.</p>","PeriodicalId":49226,"journal":{"name":"Building Simulation","volume":"1 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A performance prediction method for on-site chillers based on dynamic graph convolutional network enhanced by association rules\",\"authors\":\"Qiao Deng, Zhiwen Chen, Wanting Zhu, Zefan Li, Yifeng Yuan, Weihua Gui\",\"doi\":\"10.1007/s12273-024-1136-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Accurately predicting the chiller coefficient of performance (COP) is essential for improving the energy efficiency of heating, ventilation, and air conditioning (HVAC) systems, significantly contributing to energy conservation in buildings. Traditional performance prediction methods often overlook the dynamic interaction among sensor variables and face challenges in using extensive historical data efficiently, which impedes accurate predictions. To overcome these challenges, this paper proposes an innovative on-site chiller performance prediction method employing a dynamic graph convolutional network (GCN) enhanced by association rules. The distinctive feature of this method is constructing an association graph bank containing static graphs in each operating mode by mining the association rules between various sensor variables in historical operating data. A real-time graph is created by analyzing the correlation between various sensor variables in the current operating data. This graph is fused online with the static graph in the current operating mode to obtain a dynamic graph used for feature extraction and training of GCN. The effectiveness of this method has been empirically confirmed through the operational data of an actual building chiller system. Comparative analysis with state-of-the-art methods highlights the superior performance of the proposed method.</p>\",\"PeriodicalId\":49226,\"journal\":{\"name\":\"Building Simulation\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Building Simulation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12273-024-1136-3\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Building Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12273-024-1136-3","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
A performance prediction method for on-site chillers based on dynamic graph convolutional network enhanced by association rules
Accurately predicting the chiller coefficient of performance (COP) is essential for improving the energy efficiency of heating, ventilation, and air conditioning (HVAC) systems, significantly contributing to energy conservation in buildings. Traditional performance prediction methods often overlook the dynamic interaction among sensor variables and face challenges in using extensive historical data efficiently, which impedes accurate predictions. To overcome these challenges, this paper proposes an innovative on-site chiller performance prediction method employing a dynamic graph convolutional network (GCN) enhanced by association rules. The distinctive feature of this method is constructing an association graph bank containing static graphs in each operating mode by mining the association rules between various sensor variables in historical operating data. A real-time graph is created by analyzing the correlation between various sensor variables in the current operating data. This graph is fused online with the static graph in the current operating mode to obtain a dynamic graph used for feature extraction and training of GCN. The effectiveness of this method has been empirically confirmed through the operational data of an actual building chiller system. Comparative analysis with state-of-the-art methods highlights the superior performance of the proposed method.
期刊介绍:
Building Simulation: An International Journal publishes original, high quality, peer-reviewed research papers and review articles dealing with modeling and simulation of buildings including their systems. The goal is to promote the field of building science and technology to such a level that modeling will eventually be used in every aspect of building construction as a routine instead of an exception. Of particular interest are papers that reflect recent developments and applications of modeling tools and their impact on advances of building science and technology.