{"title":"调节高炉铁料相互作用的含镁球团:软化-熔化行为与机理","authors":"Li-ming Ma, Jian-liang Zhang, Yao-zu Wang, Xiao-yong Ma, Gui-lin Wang, Zhuo Li, Hui-qing Jiang, Zheng-jian Liu","doi":"10.1007/s42243-024-01223-4","DOIUrl":null,"url":null,"abstract":"<p>MgO participates in all stages of sintering, pelletizing, and blast furnace ironmaking, and synergistically optimizing the distribution of MgO in ferrous burden can effectively enhance the interaction within the ferrous burdens and optimize the softening–melting properties of the mixed burden. Magnesium-containing pellets mixed with low-MgO sinter or mixed with high-MgO sinter in the blast furnace ferrous burden structure have opposite softening–melting performance laws. When the structure of the ferrous burden is magnesium-containing pellets mixed with low-MgO sinter, the magnesium-containing pellets can enhance the interaction of the ferrous burden in the process of softening–melting, which can optimize the composition of the slag phase and improve the slag liquidity. When the structure of the ferrous burden is magnesium-containing pellets mixed with high-MgO sinter, the magnesium-containing pellets weaken the interaction of the ferrous burden in the process of softening–melting, increase the content of the high melting point solid-phase particles in the slag, lead to an increase in the viscosity of the slag and difficult separation of the slag and iron, and decrease the permeability of the charge layer. Therefore, to ensure good permeability of the mixed burden, the following measures are suggested: optimizing the MgO distribution of the ferrous burden, reducing the MgO content of the sinter to 1.96 wt.%, increasing the MgO content of the pellets to 1.03–1.30 wt.%, controlling the MgO/Al<sub>2</sub>O<sub>3</sub> ratio of the mixed burden within 1.15–1.32, narrowing the position of the cohesive zone, and maintaining an <i>S</i> value (permeability index) of approximately 150 kPa °C.</p>","PeriodicalId":16151,"journal":{"name":"Journal of Iron and Steel Research International","volume":"41 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnesium-containing pellet regulating blast furnace ferrous burden interaction: softening–melting behavior and mechanism\",\"authors\":\"Li-ming Ma, Jian-liang Zhang, Yao-zu Wang, Xiao-yong Ma, Gui-lin Wang, Zhuo Li, Hui-qing Jiang, Zheng-jian Liu\",\"doi\":\"10.1007/s42243-024-01223-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>MgO participates in all stages of sintering, pelletizing, and blast furnace ironmaking, and synergistically optimizing the distribution of MgO in ferrous burden can effectively enhance the interaction within the ferrous burdens and optimize the softening–melting properties of the mixed burden. Magnesium-containing pellets mixed with low-MgO sinter or mixed with high-MgO sinter in the blast furnace ferrous burden structure have opposite softening–melting performance laws. When the structure of the ferrous burden is magnesium-containing pellets mixed with low-MgO sinter, the magnesium-containing pellets can enhance the interaction of the ferrous burden in the process of softening–melting, which can optimize the composition of the slag phase and improve the slag liquidity. When the structure of the ferrous burden is magnesium-containing pellets mixed with high-MgO sinter, the magnesium-containing pellets weaken the interaction of the ferrous burden in the process of softening–melting, increase the content of the high melting point solid-phase particles in the slag, lead to an increase in the viscosity of the slag and difficult separation of the slag and iron, and decrease the permeability of the charge layer. Therefore, to ensure good permeability of the mixed burden, the following measures are suggested: optimizing the MgO distribution of the ferrous burden, reducing the MgO content of the sinter to 1.96 wt.%, increasing the MgO content of the pellets to 1.03–1.30 wt.%, controlling the MgO/Al<sub>2</sub>O<sub>3</sub> ratio of the mixed burden within 1.15–1.32, narrowing the position of the cohesive zone, and maintaining an <i>S</i> value (permeability index) of approximately 150 kPa °C.</p>\",\"PeriodicalId\":16151,\"journal\":{\"name\":\"Journal of Iron and Steel Research International\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Iron and Steel Research International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s42243-024-01223-4\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Iron and Steel Research International","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s42243-024-01223-4","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
氧化镁参与烧结、球团和高炉炼铁的各个阶段,协同优化氧化镁在铁料中的分布可有效增强铁料内部的相互作用,优化混合铁料的软化-熔化性能。在高炉铁料结构中,与低氧化镁烧结矿混合或与高氧化镁烧结矿混合的含镁球团具有相反的软化-熔化性能规律。当铁料结构为含镁球团与低氧化镁烧结矿混合时,含镁球团可增强铁料在软化-熔化过程中的相互作用,从而优化渣相组成,改善渣的流动性。当铁料结构为含镁球团与高氧化镁烧结矿混合时,含镁球团会减弱铁料在软化-熔化过程中的相互作用,增加渣中高熔点固相颗粒的含量,导致渣粘度增加,渣铁分离困难,降低料层的透气性。因此,为确保混合料具有良好的透气性,建议采取以下措施:优化铁料的氧化镁分布,将烧结矿的氧化镁含量降至 1.96 wt.%,将球团矿的氧化镁含量增至 1.03-1.30 wt.%,将混合料的氧化镁/Al2O3 比控制在 1.15-1.32 范围内,缩小内聚区的位置,并将 S 值(透气性指数)保持在 150 kPa °C 左右。
MgO participates in all stages of sintering, pelletizing, and blast furnace ironmaking, and synergistically optimizing the distribution of MgO in ferrous burden can effectively enhance the interaction within the ferrous burdens and optimize the softening–melting properties of the mixed burden. Magnesium-containing pellets mixed with low-MgO sinter or mixed with high-MgO sinter in the blast furnace ferrous burden structure have opposite softening–melting performance laws. When the structure of the ferrous burden is magnesium-containing pellets mixed with low-MgO sinter, the magnesium-containing pellets can enhance the interaction of the ferrous burden in the process of softening–melting, which can optimize the composition of the slag phase and improve the slag liquidity. When the structure of the ferrous burden is magnesium-containing pellets mixed with high-MgO sinter, the magnesium-containing pellets weaken the interaction of the ferrous burden in the process of softening–melting, increase the content of the high melting point solid-phase particles in the slag, lead to an increase in the viscosity of the slag and difficult separation of the slag and iron, and decrease the permeability of the charge layer. Therefore, to ensure good permeability of the mixed burden, the following measures are suggested: optimizing the MgO distribution of the ferrous burden, reducing the MgO content of the sinter to 1.96 wt.%, increasing the MgO content of the pellets to 1.03–1.30 wt.%, controlling the MgO/Al2O3 ratio of the mixed burden within 1.15–1.32, narrowing the position of the cohesive zone, and maintaining an S value (permeability index) of approximately 150 kPa °C.
期刊介绍:
Publishes critically reviewed original research of archival significance
Covers hydrometallurgy, pyrometallurgy, electrometallurgy, transport phenomena, process control, physical chemistry, solidification, mechanical working, solid state reactions, materials processing, and more
Includes welding & joining, surface treatment, mathematical modeling, corrosion, wear and abrasion
Journal of Iron and Steel Research International publishes original papers and occasional invited reviews on aspects of research and technology in the process metallurgy and metallic materials. Coverage emphasizes the relationships among the processing, structure and properties of metals, including advanced steel materials, superalloy, intermetallics, metallic functional materials, powder metallurgy, structural titanium alloy, composite steel materials, high entropy alloy, amorphous alloys, metallic nanomaterials, etc..