Florencia M. Onaga Medina, Marcelo J. Avena, María E. Parolo
{"title":"提高氧化石墨烯的吸附能力。Ca2+ 对四环素保留率的影响","authors":"Florencia M. Onaga Medina, Marcelo J. Avena, María E. Parolo","doi":"10.1007/s10450-024-00493-4","DOIUrl":null,"url":null,"abstract":"<div><p>Tetracyclines (TCs) constitute a group of antibiotics that are commonly used to treat bacterial diseases, in veterinary medicine and as an additive in animal feed. This broad application has led to their accumulation in food products and the environment because sewage treatment plants cannot completely remove them. Therefore, the aim of this study was to synthesize graphene oxide (GO) and evaluate its TC adsorption properties in aqueous media. The effects of pH (between 2.5 and 11) and Ca<sup>2+</sup> concentration (between 0 and 1 M) were thoroughly investigated. Structural, textural, and electrokinetic properties of the prepared GO were determined by N<sub>2</sub> adsorption/desorption, XRD, TEM, UV–vis, FTIR, XPS, thermogravimetry and electrophoretic mobility measurements. TC adsorption on GO is an interplay between the two main roles played by Ca<sup>2+</sup>: competitor or bridging cation. At low pH, there is cation exchange, and Ca<sup>2+</sup> behaves as a competitor of the positively charged TC species, decreasing adsorption as calcium concentration increases. At high, the formation of Ca bridges between the surface and TC (GO-Ca<sup>2+</sup>-TC) is favored, increasing the adsorption of the antibiotic by increasing calcium concentration. Different combinations of Ca<sup>2+</sup> and pH effects are important to improve the use of GO either as a pH-dependent and reversible TC adsorbent for decontamination or as pH-independent adsorbent for TC quantification with electrochemical sensors.</p></div>","PeriodicalId":458,"journal":{"name":"Adsorption","volume":"30 6","pages":"1193 - 1203"},"PeriodicalIF":3.0000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving the adsorption capacity of graphene oxide. Effect of Ca2+ on tetracycline retention\",\"authors\":\"Florencia M. Onaga Medina, Marcelo J. Avena, María E. Parolo\",\"doi\":\"10.1007/s10450-024-00493-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Tetracyclines (TCs) constitute a group of antibiotics that are commonly used to treat bacterial diseases, in veterinary medicine and as an additive in animal feed. This broad application has led to their accumulation in food products and the environment because sewage treatment plants cannot completely remove them. Therefore, the aim of this study was to synthesize graphene oxide (GO) and evaluate its TC adsorption properties in aqueous media. The effects of pH (between 2.5 and 11) and Ca<sup>2+</sup> concentration (between 0 and 1 M) were thoroughly investigated. Structural, textural, and electrokinetic properties of the prepared GO were determined by N<sub>2</sub> adsorption/desorption, XRD, TEM, UV–vis, FTIR, XPS, thermogravimetry and electrophoretic mobility measurements. TC adsorption on GO is an interplay between the two main roles played by Ca<sup>2+</sup>: competitor or bridging cation. At low pH, there is cation exchange, and Ca<sup>2+</sup> behaves as a competitor of the positively charged TC species, decreasing adsorption as calcium concentration increases. At high, the formation of Ca bridges between the surface and TC (GO-Ca<sup>2+</sup>-TC) is favored, increasing the adsorption of the antibiotic by increasing calcium concentration. Different combinations of Ca<sup>2+</sup> and pH effects are important to improve the use of GO either as a pH-dependent and reversible TC adsorbent for decontamination or as pH-independent adsorbent for TC quantification with electrochemical sensors.</p></div>\",\"PeriodicalId\":458,\"journal\":{\"name\":\"Adsorption\",\"volume\":\"30 6\",\"pages\":\"1193 - 1203\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adsorption\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10450-024-00493-4\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adsorption","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10450-024-00493-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Improving the adsorption capacity of graphene oxide. Effect of Ca2+ on tetracycline retention
Tetracyclines (TCs) constitute a group of antibiotics that are commonly used to treat bacterial diseases, in veterinary medicine and as an additive in animal feed. This broad application has led to their accumulation in food products and the environment because sewage treatment plants cannot completely remove them. Therefore, the aim of this study was to synthesize graphene oxide (GO) and evaluate its TC adsorption properties in aqueous media. The effects of pH (between 2.5 and 11) and Ca2+ concentration (between 0 and 1 M) were thoroughly investigated. Structural, textural, and electrokinetic properties of the prepared GO were determined by N2 adsorption/desorption, XRD, TEM, UV–vis, FTIR, XPS, thermogravimetry and electrophoretic mobility measurements. TC adsorption on GO is an interplay between the two main roles played by Ca2+: competitor or bridging cation. At low pH, there is cation exchange, and Ca2+ behaves as a competitor of the positively charged TC species, decreasing adsorption as calcium concentration increases. At high, the formation of Ca bridges between the surface and TC (GO-Ca2+-TC) is favored, increasing the adsorption of the antibiotic by increasing calcium concentration. Different combinations of Ca2+ and pH effects are important to improve the use of GO either as a pH-dependent and reversible TC adsorbent for decontamination or as pH-independent adsorbent for TC quantification with electrochemical sensors.
期刊介绍:
The journal Adsorption provides authoritative information on adsorption and allied fields to scientists, engineers, and technologists throughout the world. The information takes the form of peer-reviewed articles, R&D notes, topical review papers, tutorial papers, book reviews, meeting announcements, and news.
Coverage includes fundamental and practical aspects of adsorption: mathematics, thermodynamics, chemistry, and physics, as well as processes, applications, models engineering, and equipment design.
Among the topics are Adsorbents: new materials, new synthesis techniques, characterization of structure and properties, and applications; Equilibria: novel theories or semi-empirical models, experimental data, and new measurement methods; Kinetics: new models, experimental data, and measurement methods. Processes: chemical, biochemical, environmental, and other applications, purification or bulk separation, fixed bed or moving bed systems, simulations, experiments, and design procedures.