Xiaohang Ren, Wenting Jiang, Qiang Ji, Pengxiang Zhai
{"title":"眼见为实:从图像角度预测原油价格走势","authors":"Xiaohang Ren, Wenting Jiang, Qiang Ji, Pengxiang Zhai","doi":"10.1002/for.3149","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we propose a novel imaging method to forecast the daily price data of West Texas Intermediate (WTI) crude oil futures. We use convolutional neural networks (CNNs) for future price trend prediction and obtain higher prediction accuracy than other benchmark forecasting methods. The results show that images can contain more nonlinear information, which is beneficial for energy price forecasting. Nonlinear factors also have a strong influence during drastic fluctuations in crude oil prices. In the robustness tests, we find that the image-based CNN is the most stable approach and can be applied in various futures forecasting scenarios. In the prediction of low-frequency models for high-frequency data, the CNN method still retains considerable predictive power, indicating the possibility of transfer learning of our novel approach. By unleashing the power of the picture, we open up a whole new perspective for forecasting future energy trends.</p>","PeriodicalId":47835,"journal":{"name":"Journal of Forecasting","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seeing is believing: Forecasting crude oil price trend from the perspective of images\",\"authors\":\"Xiaohang Ren, Wenting Jiang, Qiang Ji, Pengxiang Zhai\",\"doi\":\"10.1002/for.3149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we propose a novel imaging method to forecast the daily price data of West Texas Intermediate (WTI) crude oil futures. We use convolutional neural networks (CNNs) for future price trend prediction and obtain higher prediction accuracy than other benchmark forecasting methods. The results show that images can contain more nonlinear information, which is beneficial for energy price forecasting. Nonlinear factors also have a strong influence during drastic fluctuations in crude oil prices. In the robustness tests, we find that the image-based CNN is the most stable approach and can be applied in various futures forecasting scenarios. In the prediction of low-frequency models for high-frequency data, the CNN method still retains considerable predictive power, indicating the possibility of transfer learning of our novel approach. By unleashing the power of the picture, we open up a whole new perspective for forecasting future energy trends.</p>\",\"PeriodicalId\":47835,\"journal\":{\"name\":\"Journal of Forecasting\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Forecasting\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/for.3149\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/for.3149","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
Seeing is believing: Forecasting crude oil price trend from the perspective of images
In this paper, we propose a novel imaging method to forecast the daily price data of West Texas Intermediate (WTI) crude oil futures. We use convolutional neural networks (CNNs) for future price trend prediction and obtain higher prediction accuracy than other benchmark forecasting methods. The results show that images can contain more nonlinear information, which is beneficial for energy price forecasting. Nonlinear factors also have a strong influence during drastic fluctuations in crude oil prices. In the robustness tests, we find that the image-based CNN is the most stable approach and can be applied in various futures forecasting scenarios. In the prediction of low-frequency models for high-frequency data, the CNN method still retains considerable predictive power, indicating the possibility of transfer learning of our novel approach. By unleashing the power of the picture, we open up a whole new perspective for forecasting future energy trends.
期刊介绍:
The Journal of Forecasting is an international journal that publishes refereed papers on forecasting. It is multidisciplinary, welcoming papers dealing with any aspect of forecasting: theoretical, practical, computational and methodological. A broad interpretation of the topic is taken with approaches from various subject areas, such as statistics, economics, psychology, systems engineering and social sciences, all encouraged. Furthermore, the Journal welcomes a wide diversity of applications in such fields as business, government, technology and the environment. Of particular interest are papers dealing with modelling issues and the relationship of forecasting systems to decision-making processes.