Cristian Tirelli, Juan Sapriza, Rubén Rodríguez Álvarez, Lorenzo Ferretti, Benoît Denkinger, Giovanni Ansaloni, José Miranda Calero, David Atienza, Laura Pozzi
{"title":"基于 SAT 的资源受限 CGRA 精确模数调度映射","authors":"Cristian Tirelli, Juan Sapriza, Rubén Rodríguez Álvarez, Lorenzo Ferretti, Benoît Denkinger, Giovanni Ansaloni, José Miranda Calero, David Atienza, Laura Pozzi","doi":"10.1145/3663675","DOIUrl":null,"url":null,"abstract":"<p>Coarse-Grain Reconfigurable Arrays (CGRAs) represent emerging low-power architectures designed to accelerate Compute-Intensive Loops (CILs). The effectiveness of CGRAs in providing acceleration relies on the quality of mapping: how efficiently the CIL is compiled onto the platform. State of the Art (SoA) compilation techniques utilize modulo scheduling to minimize the Iteration Interval (II) and use graph algorithms like Max-Clique Enumeration to address mapping challenges. Our work approaches the mapping problem through a satisfiability (SAT) formulation. We introduce the Kernel Mobility Schedule (KMS), an ad-hoc schedule used with the Data Flow Graph and CGRA architectural information to generate Boolean statements that, when satisfied, yield a valid mapping. Experimental results demonstrate SAT-MapIt outperforming SoA alternatives in almost 50% of explored benchmarks. Additionally, we evaluated the mapping results in a synthesizable CGRA design and emphasized the run-time metrics trends, i.e. energy efficiency and latency, across different CILs and CGRA sizes. We show that a hardware-agnostic analysis performed on compiler-level metrics can optimally prune the architectural design space, while still retaining Pareto-optimal configurations. Moreover, by exploring how implementation details impact cost and performance on real hardware, we highlight the importance of holistic software-to-hardware mapping flows, as the one presented herein.</p>","PeriodicalId":50924,"journal":{"name":"ACM Journal on Emerging Technologies in Computing Systems","volume":"55 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SAT-based Exact Modulo Scheduling Mapping for Resource-Constrained CGRAs\",\"authors\":\"Cristian Tirelli, Juan Sapriza, Rubén Rodríguez Álvarez, Lorenzo Ferretti, Benoît Denkinger, Giovanni Ansaloni, José Miranda Calero, David Atienza, Laura Pozzi\",\"doi\":\"10.1145/3663675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Coarse-Grain Reconfigurable Arrays (CGRAs) represent emerging low-power architectures designed to accelerate Compute-Intensive Loops (CILs). The effectiveness of CGRAs in providing acceleration relies on the quality of mapping: how efficiently the CIL is compiled onto the platform. State of the Art (SoA) compilation techniques utilize modulo scheduling to minimize the Iteration Interval (II) and use graph algorithms like Max-Clique Enumeration to address mapping challenges. Our work approaches the mapping problem through a satisfiability (SAT) formulation. We introduce the Kernel Mobility Schedule (KMS), an ad-hoc schedule used with the Data Flow Graph and CGRA architectural information to generate Boolean statements that, when satisfied, yield a valid mapping. Experimental results demonstrate SAT-MapIt outperforming SoA alternatives in almost 50% of explored benchmarks. Additionally, we evaluated the mapping results in a synthesizable CGRA design and emphasized the run-time metrics trends, i.e. energy efficiency and latency, across different CILs and CGRA sizes. We show that a hardware-agnostic analysis performed on compiler-level metrics can optimally prune the architectural design space, while still retaining Pareto-optimal configurations. Moreover, by exploring how implementation details impact cost and performance on real hardware, we highlight the importance of holistic software-to-hardware mapping flows, as the one presented herein.</p>\",\"PeriodicalId\":50924,\"journal\":{\"name\":\"ACM Journal on Emerging Technologies in Computing Systems\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Journal on Emerging Technologies in Computing Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3663675\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Journal on Emerging Technologies in Computing Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3663675","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
SAT-based Exact Modulo Scheduling Mapping for Resource-Constrained CGRAs
Coarse-Grain Reconfigurable Arrays (CGRAs) represent emerging low-power architectures designed to accelerate Compute-Intensive Loops (CILs). The effectiveness of CGRAs in providing acceleration relies on the quality of mapping: how efficiently the CIL is compiled onto the platform. State of the Art (SoA) compilation techniques utilize modulo scheduling to minimize the Iteration Interval (II) and use graph algorithms like Max-Clique Enumeration to address mapping challenges. Our work approaches the mapping problem through a satisfiability (SAT) formulation. We introduce the Kernel Mobility Schedule (KMS), an ad-hoc schedule used with the Data Flow Graph and CGRA architectural information to generate Boolean statements that, when satisfied, yield a valid mapping. Experimental results demonstrate SAT-MapIt outperforming SoA alternatives in almost 50% of explored benchmarks. Additionally, we evaluated the mapping results in a synthesizable CGRA design and emphasized the run-time metrics trends, i.e. energy efficiency and latency, across different CILs and CGRA sizes. We show that a hardware-agnostic analysis performed on compiler-level metrics can optimally prune the architectural design space, while still retaining Pareto-optimal configurations. Moreover, by exploring how implementation details impact cost and performance on real hardware, we highlight the importance of holistic software-to-hardware mapping flows, as the one presented herein.
期刊介绍:
The Journal of Emerging Technologies in Computing Systems invites submissions of original technical papers describing research and development in emerging technologies in computing systems. Major economic and technical challenges are expected to impede the continued scaling of semiconductor devices. This has resulted in the search for alternate mechanical, biological/biochemical, nanoscale electronic, asynchronous and quantum computing and sensor technologies. As the underlying nanotechnologies continue to evolve in the labs of chemists, physicists, and biologists, it has become imperative for computer scientists and engineers to translate the potential of the basic building blocks (analogous to the transistor) emerging from these labs into information systems. Their design will face multiple challenges ranging from the inherent (un)reliability due to the self-assembly nature of the fabrication processes for nanotechnologies, from the complexity due to the sheer volume of nanodevices that will have to be integrated for complex functionality, and from the need to integrate these new nanotechnologies with silicon devices in the same system.
The journal provides comprehensive coverage of innovative work in the specification, design analysis, simulation, verification, testing, and evaluation of computing systems constructed out of emerging technologies and advanced semiconductors