流经垂直多孔板并伴有热辐射的 MHD Casson 三元混合纳米流体:有限差分法

K. Sakkaravarthi, I. Sakthi, P. Bala Anki Reddy
{"title":"流经垂直多孔板并伴有热辐射的 MHD Casson 三元混合纳米流体:有限差分法","authors":"K. Sakkaravarthi, I. Sakthi, P. Bala Anki Reddy","doi":"10.1002/zamm.202300571","DOIUrl":null,"url":null,"abstract":"This entire study aims to investigate the impacts of linear thermal radiation and MHD Casson ternary hybrid nanofluid flows over a vertical porous plate for comparison of nanofluid, hybrid, and tri‐hybrid nanofluids with Newtonian and non‐Newtonian fluids. We used a ternary hybrid nanofluid, Blood contains three types of oxides and metals: spherical ferric oxide (<jats:italic>Fe3O4</jats:italic>), platelet‐shaped zinc (<jats:italic>Zn</jats:italic>), and cylindrically‐shaped gold (<jats:italic>Au</jats:italic>) nanoparticles. The coupled nonlinear dual partial differential equations (PDEs) are turned into PDEs using nondimensional quantities. The Finite Difference Method (FDM) and the Perturbation Method are then used to solve the PDEs. The impacts of different parameters on temperature, velocity, Nusselt number, and Skin friction profiles have been discussed. The increase in viscosity occurs because an increase in <jats:italic>Gr</jats:italic> also causes an increase in the velocity field for nanofluid, hybrid, and tri‐hybrid nanofluids. A tri‐hybrid nanofluids performs better among the three, such as nanofluid, hybrids and tri‐hybrid nanofluids. As the volume fractions (<jats:italic>Fe3O4</jats:italic>) increase, the temperature increase for both Newtonian and non‐Newtonian fluids. The increase in temperature is due to the thermal conductivity of nanoparticles, which is enhanced by growth estimates of the nanoparticle volume fraction. The high temperature of the fluid is observed for large estimates of nanoparticle volume fraction. An increase gold (<jats:italic>Au</jats:italic>) also increases the temperature for shapes (cylinder, platelet, and spherical). A spherical shape performs better among the three, such as cylinder, platelet, and spherical. In this model, biomedical applications such as antiviral and therapeutic, treatment of the COVID‐19 virus, cancer treatment, and anticancer medication delivery systems.","PeriodicalId":501230,"journal":{"name":"ZAMM - Journal of Applied Mathematics and Mechanics","volume":"61 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MHD Casson ternary hybrid nanofluid flow through a vertical porous plate with thermal radiation: A finite difference approach\",\"authors\":\"K. Sakkaravarthi, I. Sakthi, P. Bala Anki Reddy\",\"doi\":\"10.1002/zamm.202300571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This entire study aims to investigate the impacts of linear thermal radiation and MHD Casson ternary hybrid nanofluid flows over a vertical porous plate for comparison of nanofluid, hybrid, and tri‐hybrid nanofluids with Newtonian and non‐Newtonian fluids. We used a ternary hybrid nanofluid, Blood contains three types of oxides and metals: spherical ferric oxide (<jats:italic>Fe3O4</jats:italic>), platelet‐shaped zinc (<jats:italic>Zn</jats:italic>), and cylindrically‐shaped gold (<jats:italic>Au</jats:italic>) nanoparticles. The coupled nonlinear dual partial differential equations (PDEs) are turned into PDEs using nondimensional quantities. The Finite Difference Method (FDM) and the Perturbation Method are then used to solve the PDEs. The impacts of different parameters on temperature, velocity, Nusselt number, and Skin friction profiles have been discussed. The increase in viscosity occurs because an increase in <jats:italic>Gr</jats:italic> also causes an increase in the velocity field for nanofluid, hybrid, and tri‐hybrid nanofluids. A tri‐hybrid nanofluids performs better among the three, such as nanofluid, hybrids and tri‐hybrid nanofluids. As the volume fractions (<jats:italic>Fe3O4</jats:italic>) increase, the temperature increase for both Newtonian and non‐Newtonian fluids. The increase in temperature is due to the thermal conductivity of nanoparticles, which is enhanced by growth estimates of the nanoparticle volume fraction. The high temperature of the fluid is observed for large estimates of nanoparticle volume fraction. An increase gold (<jats:italic>Au</jats:italic>) also increases the temperature for shapes (cylinder, platelet, and spherical). A spherical shape performs better among the three, such as cylinder, platelet, and spherical. In this model, biomedical applications such as antiviral and therapeutic, treatment of the COVID‐19 virus, cancer treatment, and anticancer medication delivery systems.\",\"PeriodicalId\":501230,\"journal\":{\"name\":\"ZAMM - Journal of Applied Mathematics and Mechanics\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ZAMM - Journal of Applied Mathematics and Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/zamm.202300571\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ZAMM - Journal of Applied Mathematics and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/zamm.202300571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在调查线性热辐射和 MHD Casson 三元混合纳米流体在垂直多孔板上流动的影响,以比较纳米流体、混合纳米流体和三元混合纳米流体与牛顿流体和非牛顿流体。我们使用了一种三元混合纳米流体,血液中含有三种氧化物和金属:球形氧化铁(Fe3O4)、板状锌(Zn)和圆柱形金(Au)纳米颗粒。耦合的非线性二元偏微分方程 (PDE) 使用非维量转化为 PDE。然后使用有限差分法(FDM)和扰动法求解 PDE。讨论了不同参数对温度、速度、努塞尔特数和皮肤摩擦曲线的影响。对于纳米流体、混合纳米流体和三混合纳米流体来说,粘度的增加也会导致速度场的增加。在纳米流体、混合纳米流体和三混合纳米流体等三种纳米流体中,三混合纳米流体的性能更好。随着体积分数(Fe3O4)的增加,牛顿流体和非牛顿流体的温度都会升高。温度升高的原因是纳米粒子的导热性,而纳米粒子体积分数的增长估算又增强了纳米粒子的导热性。纳米粒子体积分数估计值越大,流体温度越高。金(Au)的增加也会提高各种形状(圆柱形、血小板形和球形)的温度。在圆柱体、血小板和球形等三种形状中,球形的表现更好。在该模型中,生物医学应用包括抗病毒和治疗、COVID-19 病毒治疗、癌症治疗和抗癌药物输送系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MHD Casson ternary hybrid nanofluid flow through a vertical porous plate with thermal radiation: A finite difference approach
This entire study aims to investigate the impacts of linear thermal radiation and MHD Casson ternary hybrid nanofluid flows over a vertical porous plate for comparison of nanofluid, hybrid, and tri‐hybrid nanofluids with Newtonian and non‐Newtonian fluids. We used a ternary hybrid nanofluid, Blood contains three types of oxides and metals: spherical ferric oxide (Fe3O4), platelet‐shaped zinc (Zn), and cylindrically‐shaped gold (Au) nanoparticles. The coupled nonlinear dual partial differential equations (PDEs) are turned into PDEs using nondimensional quantities. The Finite Difference Method (FDM) and the Perturbation Method are then used to solve the PDEs. The impacts of different parameters on temperature, velocity, Nusselt number, and Skin friction profiles have been discussed. The increase in viscosity occurs because an increase in Gr also causes an increase in the velocity field for nanofluid, hybrid, and tri‐hybrid nanofluids. A tri‐hybrid nanofluids performs better among the three, such as nanofluid, hybrids and tri‐hybrid nanofluids. As the volume fractions (Fe3O4) increase, the temperature increase for both Newtonian and non‐Newtonian fluids. The increase in temperature is due to the thermal conductivity of nanoparticles, which is enhanced by growth estimates of the nanoparticle volume fraction. The high temperature of the fluid is observed for large estimates of nanoparticle volume fraction. An increase gold (Au) also increases the temperature for shapes (cylinder, platelet, and spherical). A spherical shape performs better among the three, such as cylinder, platelet, and spherical. In this model, biomedical applications such as antiviral and therapeutic, treatment of the COVID‐19 virus, cancer treatment, and anticancer medication delivery systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Flow around a slender body with sharp edges Heat transfer analysis of a peristaltically induced creeping magnetohydrodynamic flow through an inclined annulus using homotopy perturbation method Mathematical modeling of convective heat transfer enhancement using circular cylinders in an inverted T‐shaped porous enclosure Numerical simulation of melting heat transport mechanism of Cross nanofluid with multiple features of infinite shear rate over a Falkner‐Skan wedge surface Wave scattering in a cracked exponentially graded magnetoelectroelastic half‐plane
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1