{"title":"关于均值最优稳健线性判别分析","authors":"Xiangyu Li, Hua Wang","doi":"10.1145/3665500","DOIUrl":null,"url":null,"abstract":"<p>Linear discriminant analysis (LDA) is widely used for dimensionality reduction under supervised learning settings. Traditional LDA objective aims to minimize the ratio of the squared Euclidean distances that may not perform optimally on noisy datasets. Multiple robust LDA objectives have been proposed to address this problem, but their implementations have two major limitations. One is that their mean calculations use the squared \\(\\ell_{2}\\)-norm distance to center the data, which is not valid when the objective depends on other distance functions. The second problem is that there is no generalized optimization algorithm to solve different robust LDA objectives. In addition, most existing algorithms can only guarantee the solution to be locally optimal, rather than globally optimal. In this paper, we review multiple robust loss functions and propose a new and generalized robust objective for LDA. Besides, to better remove the mean value within data, our objective uses an optimal way to center the data through learning. As one important algorithmic contribution, we derive an efficient iterative algorithm to optimize the resulting non-smooth and non-convex objective function. We theoretically prove that our solution algorithm guarantees that both the objective and the solution sequences converge to globally optimal solutions at a sub-linear convergence rate. The results of comprehensive experimental evaluations demonstrate the effectiveness of our new method, achieving significant improvements compared to the other competing methods.</p>","PeriodicalId":49249,"journal":{"name":"ACM Transactions on Knowledge Discovery from Data","volume":"56 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Mean-Optimal Robust Linear Discriminant Analysis\",\"authors\":\"Xiangyu Li, Hua Wang\",\"doi\":\"10.1145/3665500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Linear discriminant analysis (LDA) is widely used for dimensionality reduction under supervised learning settings. Traditional LDA objective aims to minimize the ratio of the squared Euclidean distances that may not perform optimally on noisy datasets. Multiple robust LDA objectives have been proposed to address this problem, but their implementations have two major limitations. One is that their mean calculations use the squared \\\\(\\\\ell_{2}\\\\)-norm distance to center the data, which is not valid when the objective depends on other distance functions. The second problem is that there is no generalized optimization algorithm to solve different robust LDA objectives. In addition, most existing algorithms can only guarantee the solution to be locally optimal, rather than globally optimal. In this paper, we review multiple robust loss functions and propose a new and generalized robust objective for LDA. Besides, to better remove the mean value within data, our objective uses an optimal way to center the data through learning. As one important algorithmic contribution, we derive an efficient iterative algorithm to optimize the resulting non-smooth and non-convex objective function. We theoretically prove that our solution algorithm guarantees that both the objective and the solution sequences converge to globally optimal solutions at a sub-linear convergence rate. The results of comprehensive experimental evaluations demonstrate the effectiveness of our new method, achieving significant improvements compared to the other competing methods.</p>\",\"PeriodicalId\":49249,\"journal\":{\"name\":\"ACM Transactions on Knowledge Discovery from Data\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Knowledge Discovery from Data\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3665500\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Knowledge Discovery from Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3665500","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
On Mean-Optimal Robust Linear Discriminant Analysis
Linear discriminant analysis (LDA) is widely used for dimensionality reduction under supervised learning settings. Traditional LDA objective aims to minimize the ratio of the squared Euclidean distances that may not perform optimally on noisy datasets. Multiple robust LDA objectives have been proposed to address this problem, but their implementations have two major limitations. One is that their mean calculations use the squared \(\ell_{2}\)-norm distance to center the data, which is not valid when the objective depends on other distance functions. The second problem is that there is no generalized optimization algorithm to solve different robust LDA objectives. In addition, most existing algorithms can only guarantee the solution to be locally optimal, rather than globally optimal. In this paper, we review multiple robust loss functions and propose a new and generalized robust objective for LDA. Besides, to better remove the mean value within data, our objective uses an optimal way to center the data through learning. As one important algorithmic contribution, we derive an efficient iterative algorithm to optimize the resulting non-smooth and non-convex objective function. We theoretically prove that our solution algorithm guarantees that both the objective and the solution sequences converge to globally optimal solutions at a sub-linear convergence rate. The results of comprehensive experimental evaluations demonstrate the effectiveness of our new method, achieving significant improvements compared to the other competing methods.
期刊介绍:
TKDD welcomes papers on a full range of research in the knowledge discovery and analysis of diverse forms of data. Such subjects include, but are not limited to: scalable and effective algorithms for data mining and big data analysis, mining brain networks, mining data streams, mining multi-media data, mining high-dimensional data, mining text, Web, and semi-structured data, mining spatial and temporal data, data mining for community generation, social network analysis, and graph structured data, security and privacy issues in data mining, visual, interactive and online data mining, pre-processing and post-processing for data mining, robust and scalable statistical methods, data mining languages, foundations of data mining, KDD framework and process, and novel applications and infrastructures exploiting data mining technology including massively parallel processing and cloud computing platforms. TKDD encourages papers that explore the above subjects in the context of large distributed networks of computers, parallel or multiprocessing computers, or new data devices. TKDD also encourages papers that describe emerging data mining applications that cannot be satisfied by the current data mining technology.