{"title":"几何无限可分自回归模型","authors":"Monika S. Dhull, Arun Kumar","doi":"10.1007/s00362-024-01564-y","DOIUrl":null,"url":null,"abstract":"<p>In this article, we discuss some geometric infinitely divisible (gid) random variables using the Laplace exponents which are Bernstein functions and study their properties. The distributional properties and limiting behavior of the probability densities of these gid random variables at <span>\\(0^{+}\\)</span> are studied. The autoregressive (AR) models with gid marginals are introduced. Further, the first order AR process is generalized to <i>k</i>th order AR process. We also provide the parameter estimation method based on conditional least square and method of moments for the introduced AR(1) process. We also apply the introduced AR(1) model with geometric inverse Gaussian marginals on the household energy usage data which provide a good fit as compared to normal AR(1) data.</p>","PeriodicalId":51166,"journal":{"name":"Statistical Papers","volume":"5 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometric infinitely divisible autoregressive models\",\"authors\":\"Monika S. Dhull, Arun Kumar\",\"doi\":\"10.1007/s00362-024-01564-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article, we discuss some geometric infinitely divisible (gid) random variables using the Laplace exponents which are Bernstein functions and study their properties. The distributional properties and limiting behavior of the probability densities of these gid random variables at <span>\\\\(0^{+}\\\\)</span> are studied. The autoregressive (AR) models with gid marginals are introduced. Further, the first order AR process is generalized to <i>k</i>th order AR process. We also provide the parameter estimation method based on conditional least square and method of moments for the introduced AR(1) process. We also apply the introduced AR(1) model with geometric inverse Gaussian marginals on the household energy usage data which provide a good fit as compared to normal AR(1) data.</p>\",\"PeriodicalId\":51166,\"journal\":{\"name\":\"Statistical Papers\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Papers\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00362-024-01564-y\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Papers","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00362-024-01564-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
摘要
本文利用伯恩斯坦函数的拉普拉斯指数讨论了一些几何无限可分(gid)随机变量,并研究了它们的性质。研究了这些gid随机变量在\(0^{+}\)处的概率密度的分布性质和极限行为。引入了具有 gid 边值的自回归(AR)模型。此外,还将一阶 AR 过程泛化为 kth 阶 AR 过程。我们还为引入的 AR(1) 过程提供了基于条件最小二乘法和矩法的参数估计方法。我们还将引入的具有几何反高斯边际的 AR(1) 模型应用于家庭能源使用数据,与普通 AR(1) 数据相比,该模型具有良好的拟合效果。
In this article, we discuss some geometric infinitely divisible (gid) random variables using the Laplace exponents which are Bernstein functions and study their properties. The distributional properties and limiting behavior of the probability densities of these gid random variables at \(0^{+}\) are studied. The autoregressive (AR) models with gid marginals are introduced. Further, the first order AR process is generalized to kth order AR process. We also provide the parameter estimation method based on conditional least square and method of moments for the introduced AR(1) process. We also apply the introduced AR(1) model with geometric inverse Gaussian marginals on the household energy usage data which provide a good fit as compared to normal AR(1) data.
期刊介绍:
The journal Statistical Papers addresses itself to all persons and organizations that have to deal with statistical methods in their own field of work. It attempts to provide a forum for the presentation and critical assessment of statistical methods, in particular for the discussion of their methodological foundations as well as their potential applications. Methods that have broad applications will be preferred. However, special attention is given to those statistical methods which are relevant to the economic and social sciences. In addition to original research papers, readers will find survey articles, short notes, reports on statistical software, problem section, and book reviews.