具有局部 Lipschitz 梯度的函数的前向-后向算法:均值场博弈的应用

IF 1.3 3区 数学 Q2 MATHEMATICS, APPLIED Set-Valued and Variational Analysis Pub Date : 2024-05-21 DOI:10.1007/s11228-024-00719-1
Luis M. Briceño-Arias, Francisco J. Silva, Xianjin Yang
{"title":"具有局部 Lipschitz 梯度的函数的前向-后向算法:均值场博弈的应用","authors":"Luis M. Briceño-Arias, Francisco J. Silva, Xianjin Yang","doi":"10.1007/s11228-024-00719-1","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we provide a generalization of the forward-backward splitting algorithm for minimizing the sum of a proper convex lower semicontinuous function and a differentiable convex function whose gradient satisfies a locally Lipschitz-type condition. We prove the convergence of our method and derive a linear convergence rate when the differentiable function is locally strongly convex. We recover classical results in the case when the gradient of the differentiable function is globally Lipschitz continuous and an already known linear convergence rate when the function is globally strongly convex. We apply the algorithm to approximate equilibria of variational mean field game systems with local couplings. Compared with some benchmark algorithms to solve these problems, our numerical tests show similar performances in terms of the number of iterations but an important gain in the required computational time.</p>","PeriodicalId":49537,"journal":{"name":"Set-Valued and Variational Analysis","volume":"57 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forward-Backward Algorithm for Functions with Locally Lipschitz Gradient: Applications to Mean Field Games\",\"authors\":\"Luis M. Briceño-Arias, Francisco J. Silva, Xianjin Yang\",\"doi\":\"10.1007/s11228-024-00719-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we provide a generalization of the forward-backward splitting algorithm for minimizing the sum of a proper convex lower semicontinuous function and a differentiable convex function whose gradient satisfies a locally Lipschitz-type condition. We prove the convergence of our method and derive a linear convergence rate when the differentiable function is locally strongly convex. We recover classical results in the case when the gradient of the differentiable function is globally Lipschitz continuous and an already known linear convergence rate when the function is globally strongly convex. We apply the algorithm to approximate equilibria of variational mean field game systems with local couplings. Compared with some benchmark algorithms to solve these problems, our numerical tests show similar performances in terms of the number of iterations but an important gain in the required computational time.</p>\",\"PeriodicalId\":49537,\"journal\":{\"name\":\"Set-Valued and Variational Analysis\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Set-Valued and Variational Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11228-024-00719-1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Set-Valued and Variational Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11228-024-00719-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文提供了一种前向-后向分割算法的广义方法,用于最小化适当凸下半连续函数与梯度满足局部 Lipschitz 型条件的可微凸函数之和。我们证明了我们方法的收敛性,并推导出当可微函数是局部强凸时的线性收敛率。当可微分函数的梯度为全局 Lipschitz 连续时,我们恢复了经典结果;当函数为全局强凸时,我们恢复了已知的线性收敛率。我们将该算法应用于具有局部耦合的变分均势博弈系统的近似均衡点。与解决这些问题的一些基准算法相比,我们的数值测试表明,该算法在迭代次数方面表现相似,但在所需计算时间方面有很大提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Forward-Backward Algorithm for Functions with Locally Lipschitz Gradient: Applications to Mean Field Games

In this paper, we provide a generalization of the forward-backward splitting algorithm for minimizing the sum of a proper convex lower semicontinuous function and a differentiable convex function whose gradient satisfies a locally Lipschitz-type condition. We prove the convergence of our method and derive a linear convergence rate when the differentiable function is locally strongly convex. We recover classical results in the case when the gradient of the differentiable function is globally Lipschitz continuous and an already known linear convergence rate when the function is globally strongly convex. We apply the algorithm to approximate equilibria of variational mean field game systems with local couplings. Compared with some benchmark algorithms to solve these problems, our numerical tests show similar performances in terms of the number of iterations but an important gain in the required computational time.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Set-Valued and Variational Analysis
Set-Valued and Variational Analysis MATHEMATICS, APPLIED-
CiteScore
2.90
自引率
6.20%
发文量
32
审稿时长
>12 weeks
期刊介绍: The scope of the journal includes variational analysis and its applications to mathematics, economics, and engineering; set-valued analysis and generalized differential calculus; numerical and computational aspects of set-valued and variational analysis; variational and set-valued techniques in the presence of uncertainty; equilibrium problems; variational principles and calculus of variations; optimal control; viability theory; variational inequalities and variational convergence; fixed points of set-valued mappings; differential, integral, and operator inclusions; methods of variational and set-valued analysis in models of mechanics, systems control, economics, computer vision, finance, and applied sciences. High quality papers dealing with any other theoretical aspect of control and optimization are also considered for publication.
期刊最新文献
Sensitivity Analysis in Parametric Convex Vector Optimization Steepest Geometric Descent for Regularized Quasiconvex Functions On New Generalized Differentials with Respect to a Set and Their Applications Two New Splitting Methods for Three-Operator Monotone Inclusions in Hilbert Spaces Sequential M-Stationarity Conditions for General Optimization Problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1