Luis M. Briceño-Arias, Francisco J. Silva, Xianjin Yang
{"title":"具有局部 Lipschitz 梯度的函数的前向-后向算法:均值场博弈的应用","authors":"Luis M. Briceño-Arias, Francisco J. Silva, Xianjin Yang","doi":"10.1007/s11228-024-00719-1","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we provide a generalization of the forward-backward splitting algorithm for minimizing the sum of a proper convex lower semicontinuous function and a differentiable convex function whose gradient satisfies a locally Lipschitz-type condition. We prove the convergence of our method and derive a linear convergence rate when the differentiable function is locally strongly convex. We recover classical results in the case when the gradient of the differentiable function is globally Lipschitz continuous and an already known linear convergence rate when the function is globally strongly convex. We apply the algorithm to approximate equilibria of variational mean field game systems with local couplings. Compared with some benchmark algorithms to solve these problems, our numerical tests show similar performances in terms of the number of iterations but an important gain in the required computational time.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forward-Backward Algorithm for Functions with Locally Lipschitz Gradient: Applications to Mean Field Games\",\"authors\":\"Luis M. Briceño-Arias, Francisco J. Silva, Xianjin Yang\",\"doi\":\"10.1007/s11228-024-00719-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we provide a generalization of the forward-backward splitting algorithm for minimizing the sum of a proper convex lower semicontinuous function and a differentiable convex function whose gradient satisfies a locally Lipschitz-type condition. We prove the convergence of our method and derive a linear convergence rate when the differentiable function is locally strongly convex. We recover classical results in the case when the gradient of the differentiable function is globally Lipschitz continuous and an already known linear convergence rate when the function is globally strongly convex. We apply the algorithm to approximate equilibria of variational mean field game systems with local couplings. Compared with some benchmark algorithms to solve these problems, our numerical tests show similar performances in terms of the number of iterations but an important gain in the required computational time.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11228-024-00719-1\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11228-024-00719-1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Forward-Backward Algorithm for Functions with Locally Lipschitz Gradient: Applications to Mean Field Games
In this paper, we provide a generalization of the forward-backward splitting algorithm for minimizing the sum of a proper convex lower semicontinuous function and a differentiable convex function whose gradient satisfies a locally Lipschitz-type condition. We prove the convergence of our method and derive a linear convergence rate when the differentiable function is locally strongly convex. We recover classical results in the case when the gradient of the differentiable function is globally Lipschitz continuous and an already known linear convergence rate when the function is globally strongly convex. We apply the algorithm to approximate equilibria of variational mean field game systems with local couplings. Compared with some benchmark algorithms to solve these problems, our numerical tests show similar performances in terms of the number of iterations but an important gain in the required computational time.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.