通过羟基的酯化反应实现胡敏素的升级再循环:从功能性粉末到聚乳酸泡沫和复合混合物。

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY ChemSusChem Pub Date : 2024-11-11 Epub Date: 2024-07-12 DOI:10.1002/cssc.202400403
Dilhan Kandemir, Peter Van Puyvelde, Anton Ginzburg
{"title":"通过羟基的酯化反应实现胡敏素的升级再循环:从功能性粉末到聚乳酸泡沫和复合混合物。","authors":"Dilhan Kandemir, Peter Van Puyvelde, Anton Ginzburg","doi":"10.1002/cssc.202400403","DOIUrl":null,"url":null,"abstract":"<p><p>The valorization of humins side streams from bio-refineries holds significant economic and sustainability potential. One plausible strategy involves using them as building blocks to create new materials. However, humins pose conceptual challenges in their natural state due to their high viscosity, processing difficulties, and temperature sensitivity. This article presents a synthetic strategy for modifying humins properties to make them thermally stable and processable. Employing a sequence of esterification reactions and varying the reagent steric length, we showcase the selective transformation of humins into thermally-stable fine powders and low-viscosity liquids. We extend this approach by reacting humins with polyesters such as polylactic acids and polycaprolactone. In particular, we detail a one-pot single-step synthesis of micro-phase separated compatibilized blends of polylactic acid and humins capped with the polylactic acid arms. Processed via solution-casting, the obtained materials behave as high-strength thermoplastic elastomers having uniform foam morphologies and material characteristics superior to the pure polylactic acid. By varying the content of D-enantiomers, we demonstrate an additional possibility of manipulating the cellular structures of the foams. Finally, we provide a solution to product circularity by reporting a dissolution recycling method.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Upcycling Humins via Esterification Reactions of Hydroxyl Groups: From Functional Powders to PLA Foams and Compatibilized Blends.\",\"authors\":\"Dilhan Kandemir, Peter Van Puyvelde, Anton Ginzburg\",\"doi\":\"10.1002/cssc.202400403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The valorization of humins side streams from bio-refineries holds significant economic and sustainability potential. One plausible strategy involves using them as building blocks to create new materials. However, humins pose conceptual challenges in their natural state due to their high viscosity, processing difficulties, and temperature sensitivity. This article presents a synthetic strategy for modifying humins properties to make them thermally stable and processable. Employing a sequence of esterification reactions and varying the reagent steric length, we showcase the selective transformation of humins into thermally-stable fine powders and low-viscosity liquids. We extend this approach by reacting humins with polyesters such as polylactic acids and polycaprolactone. In particular, we detail a one-pot single-step synthesis of micro-phase separated compatibilized blends of polylactic acid and humins capped with the polylactic acid arms. Processed via solution-casting, the obtained materials behave as high-strength thermoplastic elastomers having uniform foam morphologies and material characteristics superior to the pure polylactic acid. By varying the content of D-enantiomers, we demonstrate an additional possibility of manipulating the cellular structures of the foams. Finally, we provide a solution to product circularity by reporting a dissolution recycling method.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202400403\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202400403","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

生物精炼厂产生的腐殖质副流的价值提升具有巨大的经济和可持续发展潜力。一种可行的策略是将腐殖质用作制造新材料的构件。然而,在自然状态下,腐殖质因其高粘度、加工困难和对温度敏感而带来了概念上的挑战。本文介绍了一种改变腐植酸特性的合成策略,使其具有热稳定性和可加工性。通过一系列酯化反应和改变试剂的立体长度,我们展示了如何将腐植酸选择性地转化为热稳定性的细粉末和低粘度液体。我们通过将腐植酸与聚乳酸和聚己内酯等聚酯进行反应,进一步扩展了这种方法。特别是,我们详细介绍了聚乳酸和腐植酸的微相分离相容混合物的一步法合成方法。通过溶液浇铸加工,获得的材料表现为高强度热塑性弹性体,具有均匀的泡沫形态和优于纯聚乳酸的材料特性。通过改变 D-对映体的含量,我们展示了操纵泡沫细胞结构的另一种可能性。最后,我们报告了一种溶解回收方法,为产品的循环利用提供了解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Upcycling Humins via Esterification Reactions of Hydroxyl Groups: From Functional Powders to PLA Foams and Compatibilized Blends.

The valorization of humins side streams from bio-refineries holds significant economic and sustainability potential. One plausible strategy involves using them as building blocks to create new materials. However, humins pose conceptual challenges in their natural state due to their high viscosity, processing difficulties, and temperature sensitivity. This article presents a synthetic strategy for modifying humins properties to make them thermally stable and processable. Employing a sequence of esterification reactions and varying the reagent steric length, we showcase the selective transformation of humins into thermally-stable fine powders and low-viscosity liquids. We extend this approach by reacting humins with polyesters such as polylactic acids and polycaprolactone. In particular, we detail a one-pot single-step synthesis of micro-phase separated compatibilized blends of polylactic acid and humins capped with the polylactic acid arms. Processed via solution-casting, the obtained materials behave as high-strength thermoplastic elastomers having uniform foam morphologies and material characteristics superior to the pure polylactic acid. By varying the content of D-enantiomers, we demonstrate an additional possibility of manipulating the cellular structures of the foams. Finally, we provide a solution to product circularity by reporting a dissolution recycling method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
期刊最新文献
Improved Compatibility of α-NaMnO2 Cathodes at the Interface with Ionic Liquid Electrolytes. Versatile Separators Toward Advanced Lithium-Sulfur Batteries: Status, Recent Progress, Challenges and Perspective. Influence of F-Containing Materials on Perovskite Solar Cells. Promoting Water Oxidation by Proton Acceptable Groups Surrounding Catalyst on Electrode Surface. Sulfite-Assisted Acetate Conversion from CO Electroreduction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1