Dilhan Kandemir, Peter Van Puyvelde, Anton Ginzburg
{"title":"通过羟基的酯化反应实现胡敏素的升级再循环:从功能性粉末到聚乳酸泡沫和复合混合物。","authors":"Dilhan Kandemir, Peter Van Puyvelde, Anton Ginzburg","doi":"10.1002/cssc.202400403","DOIUrl":null,"url":null,"abstract":"<p><p>The valorization of humins side streams from bio-refineries holds significant economic and sustainability potential. One plausible strategy involves using them as building blocks to create new materials. However, humins pose conceptual challenges in their natural state due to their high viscosity, processing difficulties, and temperature sensitivity. This article presents a synthetic strategy for modifying humins properties to make them thermally stable and processable. Employing a sequence of esterification reactions and varying the reagent steric length, we showcase the selective transformation of humins into thermally-stable fine powders and low-viscosity liquids. We extend this approach by reacting humins with polyesters such as polylactic acids and polycaprolactone. In particular, we detail a one-pot single-step synthesis of micro-phase separated compatibilized blends of polylactic acid and humins capped with the polylactic acid arms. Processed via solution-casting, the obtained materials behave as high-strength thermoplastic elastomers having uniform foam morphologies and material characteristics superior to the pure polylactic acid. By varying the content of D-enantiomers, we demonstrate an additional possibility of manipulating the cellular structures of the foams. Finally, we provide a solution to product circularity by reporting a dissolution recycling method.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Upcycling Humins via Esterification Reactions of Hydroxyl Groups: From Functional Powders to PLA Foams and Compatibilized Blends.\",\"authors\":\"Dilhan Kandemir, Peter Van Puyvelde, Anton Ginzburg\",\"doi\":\"10.1002/cssc.202400403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The valorization of humins side streams from bio-refineries holds significant economic and sustainability potential. One plausible strategy involves using them as building blocks to create new materials. However, humins pose conceptual challenges in their natural state due to their high viscosity, processing difficulties, and temperature sensitivity. This article presents a synthetic strategy for modifying humins properties to make them thermally stable and processable. Employing a sequence of esterification reactions and varying the reagent steric length, we showcase the selective transformation of humins into thermally-stable fine powders and low-viscosity liquids. We extend this approach by reacting humins with polyesters such as polylactic acids and polycaprolactone. In particular, we detail a one-pot single-step synthesis of micro-phase separated compatibilized blends of polylactic acid and humins capped with the polylactic acid arms. Processed via solution-casting, the obtained materials behave as high-strength thermoplastic elastomers having uniform foam morphologies and material characteristics superior to the pure polylactic acid. By varying the content of D-enantiomers, we demonstrate an additional possibility of manipulating the cellular structures of the foams. Finally, we provide a solution to product circularity by reporting a dissolution recycling method.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202400403\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202400403","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Upcycling Humins via Esterification Reactions of Hydroxyl Groups: From Functional Powders to PLA Foams and Compatibilized Blends.
The valorization of humins side streams from bio-refineries holds significant economic and sustainability potential. One plausible strategy involves using them as building blocks to create new materials. However, humins pose conceptual challenges in their natural state due to their high viscosity, processing difficulties, and temperature sensitivity. This article presents a synthetic strategy for modifying humins properties to make them thermally stable and processable. Employing a sequence of esterification reactions and varying the reagent steric length, we showcase the selective transformation of humins into thermally-stable fine powders and low-viscosity liquids. We extend this approach by reacting humins with polyesters such as polylactic acids and polycaprolactone. In particular, we detail a one-pot single-step synthesis of micro-phase separated compatibilized blends of polylactic acid and humins capped with the polylactic acid arms. Processed via solution-casting, the obtained materials behave as high-strength thermoplastic elastomers having uniform foam morphologies and material characteristics superior to the pure polylactic acid. By varying the content of D-enantiomers, we demonstrate an additional possibility of manipulating the cellular structures of the foams. Finally, we provide a solution to product circularity by reporting a dissolution recycling method.
期刊介绍:
ChemSusChem
Impact Factor (2016): 7.226
Scope:
Interdisciplinary journal
Focuses on research at the interface of chemistry and sustainability
Features the best research on sustainability and energy
Areas Covered:
Chemistry
Materials Science
Chemical Engineering
Biotechnology