Xiaoxiao Xiao, Ming Zhang, Yiwei Qian, Xuepeng Wang, Qiang Wu
{"title":"KLF9 可调节间充质干细胞的成骨分化。","authors":"Xiaoxiao Xiao, Ming Zhang, Yiwei Qian, Xuepeng Wang, Qiang Wu","doi":"10.1007/s10735-024-10204-6","DOIUrl":null,"url":null,"abstract":"<div><p>Osteoporosis is a progressive skeletal disease which is characterized by reduced bone mass and degradation of bone microstructure. Mesenchymal stem cells (MSCs) have the potential to inhibit osteoporosis since they are multipotent stem cells that can differentiate into multiple types of cells including osteoblasts. Hence the mechanism of osteogenic differentiation of MSCs deserves comprehensive study. Here we report that KLF9 is a novel regulator in osteogenic differentiation of MSCs. We observed that depletion of KLF9 can largely compromise the osteogenic differentiation ability of MSCs. In addition, we revealed that inhibition of the PI3K-Akt pathway could also affect osteogenic differentiation since KLF9 depletion inhibits PI3K expression. Finally, we discovered that KLF9 expression can be induced by dexamethasone which is an essential component in osteogenic induction medium. Taken together, our study provides new insights into the regulatory role of KLF9 in osteogenic differentiation of MSCs.</p></div>","PeriodicalId":650,"journal":{"name":"Journal of Molecular Histology","volume":"55 4","pages":"503 - 512"},"PeriodicalIF":2.9000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"KLF9 regulates osteogenic differentiation of mesenchymal stem cells\",\"authors\":\"Xiaoxiao Xiao, Ming Zhang, Yiwei Qian, Xuepeng Wang, Qiang Wu\",\"doi\":\"10.1007/s10735-024-10204-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Osteoporosis is a progressive skeletal disease which is characterized by reduced bone mass and degradation of bone microstructure. Mesenchymal stem cells (MSCs) have the potential to inhibit osteoporosis since they are multipotent stem cells that can differentiate into multiple types of cells including osteoblasts. Hence the mechanism of osteogenic differentiation of MSCs deserves comprehensive study. Here we report that KLF9 is a novel regulator in osteogenic differentiation of MSCs. We observed that depletion of KLF9 can largely compromise the osteogenic differentiation ability of MSCs. In addition, we revealed that inhibition of the PI3K-Akt pathway could also affect osteogenic differentiation since KLF9 depletion inhibits PI3K expression. Finally, we discovered that KLF9 expression can be induced by dexamethasone which is an essential component in osteogenic induction medium. Taken together, our study provides new insights into the regulatory role of KLF9 in osteogenic differentiation of MSCs.</p></div>\",\"PeriodicalId\":650,\"journal\":{\"name\":\"Journal of Molecular Histology\",\"volume\":\"55 4\",\"pages\":\"503 - 512\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Histology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10735-024-10204-6\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Histology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10735-024-10204-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
KLF9 regulates osteogenic differentiation of mesenchymal stem cells
Osteoporosis is a progressive skeletal disease which is characterized by reduced bone mass and degradation of bone microstructure. Mesenchymal stem cells (MSCs) have the potential to inhibit osteoporosis since they are multipotent stem cells that can differentiate into multiple types of cells including osteoblasts. Hence the mechanism of osteogenic differentiation of MSCs deserves comprehensive study. Here we report that KLF9 is a novel regulator in osteogenic differentiation of MSCs. We observed that depletion of KLF9 can largely compromise the osteogenic differentiation ability of MSCs. In addition, we revealed that inhibition of the PI3K-Akt pathway could also affect osteogenic differentiation since KLF9 depletion inhibits PI3K expression. Finally, we discovered that KLF9 expression can be induced by dexamethasone which is an essential component in osteogenic induction medium. Taken together, our study provides new insights into the regulatory role of KLF9 in osteogenic differentiation of MSCs.
期刊介绍:
The Journal of Molecular Histology publishes results of original research on the localization and expression of molecules in animal cells, tissues and organs. Coverage includes studies describing novel cellular or ultrastructural distributions of molecules which provide insight into biochemical or physiological function, development, histologic structure and disease processes.
Major research themes of particular interest include:
- Cell-Cell and Cell-Matrix Interactions;
- Connective Tissues;
- Development and Disease;
- Neuroscience.
Please note that the Journal of Molecular Histology does not consider manuscripts dealing with the application of immunological or other probes on non-standard laboratory animal models unless the results are clearly of significant and general biological importance.
The Journal of Molecular Histology publishes full-length original research papers, review articles, short communications and letters to the editors. All manuscripts are typically reviewed by two independent referees. The Journal of Molecular Histology is a continuation of The Histochemical Journal.