{"title":"时间可达性最小化:延迟与删除","authors":"Hendrik Molter , Malte Renken , Philipp Zschoche","doi":"10.1016/j.jcss.2024.103549","DOIUrl":null,"url":null,"abstract":"<div><p>We study spreading processes in temporal graphs, that is, graphs whose connections change over time. More precisely, we investigate how such a spreading process, emerging from a given set of sources, can be contained to a small part of the graph. We consider two ways of modifying the graph, which are (1) deleting and (2) delaying connections. We show a close relationship between the two associated problems. It is known that both problems are W[1]-hard when parameterized by the number of modifications. We consider the number of vertices to which the spread is contained as a parameter. Surprisingly, we prove W[1]-hardness for the deletion variant but fixed-parameter tractability for the delaying variant. Furthermore, we give a polynomial time algorithm for both problem variants when the graph has a tree structure and show how to generalize this result to an FPT-algorithm for the so-called timed feedback vertex number as a parameter.</p></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"144 ","pages":"Article 103549"},"PeriodicalIF":1.1000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temporal reachability minimization: Delaying vs. deleting\",\"authors\":\"Hendrik Molter , Malte Renken , Philipp Zschoche\",\"doi\":\"10.1016/j.jcss.2024.103549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study spreading processes in temporal graphs, that is, graphs whose connections change over time. More precisely, we investigate how such a spreading process, emerging from a given set of sources, can be contained to a small part of the graph. We consider two ways of modifying the graph, which are (1) deleting and (2) delaying connections. We show a close relationship between the two associated problems. It is known that both problems are W[1]-hard when parameterized by the number of modifications. We consider the number of vertices to which the spread is contained as a parameter. Surprisingly, we prove W[1]-hardness for the deletion variant but fixed-parameter tractability for the delaying variant. Furthermore, we give a polynomial time algorithm for both problem variants when the graph has a tree structure and show how to generalize this result to an FPT-algorithm for the so-called timed feedback vertex number as a parameter.</p></div>\",\"PeriodicalId\":50224,\"journal\":{\"name\":\"Journal of Computer and System Sciences\",\"volume\":\"144 \",\"pages\":\"Article 103549\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer and System Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022000024000448\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer and System Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022000024000448","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
Temporal reachability minimization: Delaying vs. deleting
We study spreading processes in temporal graphs, that is, graphs whose connections change over time. More precisely, we investigate how such a spreading process, emerging from a given set of sources, can be contained to a small part of the graph. We consider two ways of modifying the graph, which are (1) deleting and (2) delaying connections. We show a close relationship between the two associated problems. It is known that both problems are W[1]-hard when parameterized by the number of modifications. We consider the number of vertices to which the spread is contained as a parameter. Surprisingly, we prove W[1]-hardness for the deletion variant but fixed-parameter tractability for the delaying variant. Furthermore, we give a polynomial time algorithm for both problem variants when the graph has a tree structure and show how to generalize this result to an FPT-algorithm for the so-called timed feedback vertex number as a parameter.
期刊介绍:
The Journal of Computer and System Sciences publishes original research papers in computer science and related subjects in system science, with attention to the relevant mathematical theory. Applications-oriented papers may also be accepted and they are expected to contain deep analytic evaluation of the proposed solutions.
Research areas include traditional subjects such as:
• Theory of algorithms and computability
• Formal languages
• Automata theory
Contemporary subjects such as:
• Complexity theory
• Algorithmic Complexity
• Parallel & distributed computing
• Computer networks
• Neural networks
• Computational learning theory
• Database theory & practice
• Computer modeling of complex systems
• Security and Privacy.