环矩阵变换的修正收缩目标问题

Fractals Pub Date : 2024-05-21 DOI:10.1142/s0218348x24500762
NA YUAN, SHUAILING WANG
{"title":"环矩阵变换的修正收缩目标问题","authors":"NA YUAN, SHUAILING WANG","doi":"10.1142/s0218348x24500762","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we calculate the Hausdorff dimension of the fractal set <disp-formula-group><span><math altimg=\"eq-00001.gif\" display=\"block\" overflow=\"scroll\"><mrow><mfenced close=\"}\" open=\"{\" separators=\"\"><mrow><mstyle mathvariant=\"monospace\"><mi>x</mi></mstyle><mo>∈</mo><msup><mrow><mi>𝕋</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>:</mo><munder><mrow><mo>∏</mo></mrow><mrow><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>d</mi></mrow></munder><mo>|</mo><msubsup><mrow><mi>T</mi></mrow><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow><mrow><mi>n</mi></mrow></msubsup><mo stretchy=\"false\">(</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">−</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo><mo>&lt;</mo><mi>ψ</mi><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo><mtext> </mtext><mstyle><mtext>for infinitely many </mtext></mstyle><mi>n</mi><mo>∈</mo><mi>ℕ</mi></mrow></mfenced><mspace width=\"-.17em\"></mspace><mo>,</mo></mrow></math></span><span></span></disp-formula-group> where <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>T</mi></mrow><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msub></math></span><span></span> is the standard <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>β</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span><span></span>-transformation with <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>β</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>&gt;</mo><mn>1</mn></math></span><span></span>, <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>ψ</mi></math></span><span></span> is a positive function on <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>ℕ</mi></math></span><span></span> and <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mo>|</mo><mo stretchy=\"false\">⋅</mo><mo>|</mo></math></span><span></span> is the usual metric on the torus <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>𝕋</mi></math></span><span></span>. Moreover, we investigate a modified version of the shrinking target problem, which unifies the shrinking target problems and quantitative recurrence properties for matrix transformations of tori. Let <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>T</mi></math></span><span></span> be a <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mi>d</mi><mo stretchy=\"false\">×</mo><mi>d</mi></math></span><span></span> non-singular matrix with real coefficients. Then, <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>T</mi></math></span><span></span> determines a self-map of the <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mi>d</mi></math></span><span></span>-dimensional torus <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>𝕋</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>:</mo><mo>=</mo><msup><mrow><mi>ℝ</mi></mrow><mrow><mi>d</mi></mrow></msup><mspace width=\"-.2em\"></mspace><mo stretchy=\"false\">/</mo><msup><mrow><mi>ℤ</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span><span></span>. For any <span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>d</mi></math></span><span></span>, let <span><math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>ψ</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span><span></span> be a positive function on <span><math altimg=\"eq-00016.gif\" display=\"inline\" overflow=\"scroll\"><mi>ℕ</mi></math></span><span></span> and <span><math altimg=\"eq-00017.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"normal\">Ψ</mi><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo><mo>:</mo><mo>=</mo><mo stretchy=\"false\">(</mo><msub><mrow><mi>ψ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>ψ</mi></mrow><mrow><mi>d</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">)</mo></math></span><span></span> with <span><math altimg=\"eq-00018.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo>∈</mo><mi>ℕ</mi></math></span><span></span>. We obtain the Hausdorff dimension of the fractal set <disp-formula-group><span><math altimg=\"eq-00019.gif\" display=\"block\" overflow=\"scroll\"><mrow><mo stretchy=\"false\">{</mo><mstyle mathvariant=\"monospace\"><mi>x</mi></mstyle><mo>∈</mo><msup><mrow><mi>𝕋</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>:</mo><msup><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msup><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo><mo>∈</mo><mi>L</mi><mo stretchy=\"false\">(</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mstyle mathvariant=\"monospace\"><mi>x</mi></mstyle><mo stretchy=\"false\">)</mo><mo>,</mo><mi mathvariant=\"normal\">Ψ</mi><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">)</mo><mtext> </mtext><mstyle><mtext>for infinitely many </mtext></mstyle><mi>n</mi><mo>∈</mo><mi>ℕ</mi><mo stretchy=\"false\">}</mo><mo>,</mo></mrow></math></span><span></span></disp-formula-group> where <span><math altimg=\"eq-00020.gif\" display=\"inline\" overflow=\"scroll\"><mi>L</mi><mo stretchy=\"false\">(</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mstyle mathvariant=\"monospace\"><mi>x</mi></mstyle><mo>,</mo><mi mathvariant=\"normal\">Ψ</mi><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">)</mo></math></span><span></span> is a hyperrectangle and <span><math altimg=\"eq-00021.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mo stretchy=\"false\">{</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">}</mo></mrow><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></msub></math></span><span></span> is a sequence of Lipschitz vector-valued functions on <span><math altimg=\"eq-00022.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>𝕋</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span><span></span> with a uniform Lipschitz constant.</p>","PeriodicalId":501262,"journal":{"name":"Fractals","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MODIFIED SHRINKING TARGET PROBLEM FOR MATRIX TRANSFORMATIONS OF TORI\",\"authors\":\"NA YUAN, SHUAILING WANG\",\"doi\":\"10.1142/s0218348x24500762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we calculate the Hausdorff dimension of the fractal set <disp-formula-group><span><math altimg=\\\"eq-00001.gif\\\" display=\\\"block\\\" overflow=\\\"scroll\\\"><mrow><mfenced close=\\\"}\\\" open=\\\"{\\\" separators=\\\"\\\"><mrow><mstyle mathvariant=\\\"monospace\\\"><mi>x</mi></mstyle><mo>∈</mo><msup><mrow><mi>𝕋</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>:</mo><munder><mrow><mo>∏</mo></mrow><mrow><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>d</mi></mrow></munder><mo>|</mo><msubsup><mrow><mi>T</mi></mrow><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow><mrow><mi>n</mi></mrow></msubsup><mo stretchy=\\\"false\\\">(</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub><mo stretchy=\\\"false\\\">)</mo><mo stretchy=\\\"false\\\">−</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo><mo>&lt;</mo><mi>ψ</mi><mo stretchy=\\\"false\\\">(</mo><mi>n</mi><mo stretchy=\\\"false\\\">)</mo><mtext> </mtext><mstyle><mtext>for infinitely many </mtext></mstyle><mi>n</mi><mo>∈</mo><mi>ℕ</mi></mrow></mfenced><mspace width=\\\"-.17em\\\"></mspace><mo>,</mo></mrow></math></span><span></span></disp-formula-group> where <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>T</mi></mrow><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msub></math></span><span></span> is the standard <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>β</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span><span></span>-transformation with <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>β</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>&gt;</mo><mn>1</mn></math></span><span></span>, <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>ψ</mi></math></span><span></span> is a positive function on <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>ℕ</mi></math></span><span></span> and <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo>|</mo><mo stretchy=\\\"false\\\">⋅</mo><mo>|</mo></math></span><span></span> is the usual metric on the torus <span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>𝕋</mi></math></span><span></span>. Moreover, we investigate a modified version of the shrinking target problem, which unifies the shrinking target problems and quantitative recurrence properties for matrix transformations of tori. Let <span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>T</mi></math></span><span></span> be a <span><math altimg=\\\"eq-00010.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>d</mi><mo stretchy=\\\"false\\\">×</mo><mi>d</mi></math></span><span></span> non-singular matrix with real coefficients. Then, <span><math altimg=\\\"eq-00011.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>T</mi></math></span><span></span> determines a self-map of the <span><math altimg=\\\"eq-00012.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>d</mi></math></span><span></span>-dimensional torus <span><math altimg=\\\"eq-00013.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>𝕋</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>:</mo><mo>=</mo><msup><mrow><mi>ℝ</mi></mrow><mrow><mi>d</mi></mrow></msup><mspace width=\\\"-.2em\\\"></mspace><mo stretchy=\\\"false\\\">/</mo><msup><mrow><mi>ℤ</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span><span></span>. For any <span><math altimg=\\\"eq-00014.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>d</mi></math></span><span></span>, let <span><math altimg=\\\"eq-00015.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>ψ</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span><span></span> be a positive function on <span><math altimg=\\\"eq-00016.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>ℕ</mi></math></span><span></span> and <span><math altimg=\\\"eq-00017.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi mathvariant=\\\"normal\\\">Ψ</mi><mo stretchy=\\\"false\\\">(</mo><mi>n</mi><mo stretchy=\\\"false\\\">)</mo><mo>:</mo><mo>=</mo><mo stretchy=\\\"false\\\">(</mo><msub><mrow><mi>ψ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>n</mi><mo stretchy=\\\"false\\\">)</mo><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>ψ</mi></mrow><mrow><mi>d</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>n</mi><mo stretchy=\\\"false\\\">)</mo><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> with <span><math altimg=\\\"eq-00018.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>n</mi><mo>∈</mo><mi>ℕ</mi></math></span><span></span>. We obtain the Hausdorff dimension of the fractal set <disp-formula-group><span><math altimg=\\\"eq-00019.gif\\\" display=\\\"block\\\" overflow=\\\"scroll\\\"><mrow><mo stretchy=\\\"false\\\">{</mo><mstyle mathvariant=\\\"monospace\\\"><mi>x</mi></mstyle><mo>∈</mo><msup><mrow><mi>𝕋</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>:</mo><msup><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msup><mo stretchy=\\\"false\\\">(</mo><mi>x</mi><mo stretchy=\\\"false\\\">)</mo><mo>∈</mo><mi>L</mi><mo stretchy=\\\"false\\\">(</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mstyle mathvariant=\\\"monospace\\\"><mi>x</mi></mstyle><mo stretchy=\\\"false\\\">)</mo><mo>,</mo><mi mathvariant=\\\"normal\\\">Ψ</mi><mo stretchy=\\\"false\\\">(</mo><mi>n</mi><mo stretchy=\\\"false\\\">)</mo><mo stretchy=\\\"false\\\">)</mo><mtext> </mtext><mstyle><mtext>for infinitely many </mtext></mstyle><mi>n</mi><mo>∈</mo><mi>ℕ</mi><mo stretchy=\\\"false\\\">}</mo><mo>,</mo></mrow></math></span><span></span></disp-formula-group> where <span><math altimg=\\\"eq-00020.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>L</mi><mo stretchy=\\\"false\\\">(</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mstyle mathvariant=\\\"monospace\\\"><mi>x</mi></mstyle><mo>,</mo><mi mathvariant=\\\"normal\\\">Ψ</mi><mo stretchy=\\\"false\\\">(</mo><mi>n</mi><mo stretchy=\\\"false\\\">)</mo><mo stretchy=\\\"false\\\">)</mo><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> is a hyperrectangle and <span><math altimg=\\\"eq-00021.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mo stretchy=\\\"false\\\">{</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\\\"false\\\">}</mo></mrow><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></msub></math></span><span></span> is a sequence of Lipschitz vector-valued functions on <span><math altimg=\\\"eq-00022.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>𝕋</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span><span></span> with a uniform Lipschitz constant.</p>\",\"PeriodicalId\":501262,\"journal\":{\"name\":\"Fractals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218348x24500762\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218348x24500762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文计算了分形集 x∈𝕋d 的 Hausdorff 维度:∏1≤i≤d|Tβin(xi)-xi|<ψ(n),其中Tβi是标准的βi-变换,βi>1,ψ是ℕ上的正函数,|⋅|是环面𝕋上的通常度量。此外,我们还研究了缩小目标问题的一个修正版本,它将缩小目标问题与环矩阵变换的定量递推性质统一起来。假设 T 是一个具有实系数的 d×d 非奇异矩阵。那么,T 决定了 d 维环面的自映射𝕋d:=ℝd/ℤd。对于任意 1≤i≤d,设ψi 是ℕ上的正函数,且Ψ(n):=(ψ1(n),...,ψd(n)),n∈ℕ。我们可以得到分形集 {x∈𝕋d 的豪斯多夫维:Tn(x)∈L(fn(x),Ψ(n)) for infinitely many n∈ℕ},其中 L(fn(x,Ψ(n)) 是一个超矩形,{}n≥1 是在𝕋d 上具有均匀 Lipschitz 常量的 Lipschitz 向量值函数序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MODIFIED SHRINKING TARGET PROBLEM FOR MATRIX TRANSFORMATIONS OF TORI

In this paper, we calculate the Hausdorff dimension of the fractal set x𝕋d:1id|Tβin(xi)xi|<ψ(n) for infinitely many n, where Tβi is the standard βi-transformation with βi>1, ψ is a positive function on and || is the usual metric on the torus 𝕋. Moreover, we investigate a modified version of the shrinking target problem, which unifies the shrinking target problems and quantitative recurrence properties for matrix transformations of tori. Let T be a d×d non-singular matrix with real coefficients. Then, T determines a self-map of the d-dimensional torus 𝕋d:=d/d. For any 1id, let ψi be a positive function on and Ψ(n):=(ψ1(n),,ψd(n)) with n. We obtain the Hausdorff dimension of the fractal set {x𝕋d:Tn(x)L(fn(x),Ψ(n)) for infinitely many n}, where L(fn(x,Ψ(n))) is a hyperrectangle and {fn}n1 is a sequence of Lipschitz vector-valued functions on 𝕋d with a uniform Lipschitz constant.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fractal Geometry-Based Resource Allocation for MIMO Radar A Reliable Numerical Algorithm for Treatment of Fractional Model of Convective Straight Fins with Temperature Dependent Thermal Conductivity Reducing PAPR in OTFS 6G Waveforms Using Particle Swarm Optimization-Based PTS and SLM Techniques with 64, 256, and 512 Sub-Carriers in Rician and Rayleigh Channels Enhancing OTFS Modulation for 6G through Hybrid PAPR Reduction Technique for Different Sub-Carriers Fractal Peak Power Analysis on NOMA Waveforms using the PTS Method for different Sub-Carriers: Applications in 5G and Beyond
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1