Tomonobu M. Watanabe, Seiko Ueda, Saki Ishida, Go Shioi, Junichi Kaneshiro, Michi Magari
{"title":"基于第二近红外窗口偏振显微镜的人类头发内部损伤光学评估。","authors":"Tomonobu M. Watanabe, Seiko Ueda, Saki Ishida, Go Shioi, Junichi Kaneshiro, Michi Magari","doi":"10.1111/ics.12970","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Objective</h3>\n \n <p>Hair beauty treatments glorify human life. As a side effect, there is a risk of deteriorating the health of the hair. Optically polarized microscopy has been used for many decades to evaluate hair conditions owing to its ease of use and low operating costs. However, the low biopermeability of light hinders the observation of detailed structures inside hair. The aim of this study is to establish an evaluation technique of internal damages in a hair by utilizing a near-infrared (NIR) light with a wavelength of 1000–1600 nm, called “second NIR window”.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We built a laser scanning transmission microscope system with an indium gallium arsenide detector, a 1064 nm laser source, and optical circular polarization to visualize the anisotropy characterization of keratin fibres in hair. Samples of Asian black hair before and after bleaching, after permanent-waving, after lithium bromide (LiBr) treatment, and after heating was observed. Some parameters reflecting intra-hair damage were quantitatively compared with the parameters in digitally recorded images with analytical developments.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>The light transmittance of black hair was dramatically improved by utilizing the second NIR window. Numerical analysis of circular polarization in hair quantified the internal damage in chemically or thermally treated hair and found two different types of damage. The present method enabled quantitative evaluation of the condition changes in the cortex; for example, a decrease in circular polarizability by LiBr treatment and restoration by replacing the LiBr solution with water. In addition, black speckles were observed after the heat treatment. Longer heating and wetting times increased the appearance probability and size of the speckles. According to quantitative analyses, the emergence of black spots was independent of polarizability changes, indicating that they were not pores.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>Circular polarization microscopy based on near-infrared optics in the second NIR window provides an effective evaluation method for quantifying intra-hair damage caused by cosmetic treatments. The present method provides noninvasive, easy, and inexpensive hair evaluation and has potential as a gold standard in hair care research/medical fields.</p>\n </section>\n </div>","PeriodicalId":13936,"journal":{"name":"International Journal of Cosmetic Science","volume":"46 6","pages":"850-864"},"PeriodicalIF":2.7000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ics.12970","citationCount":"0","resultStr":"{\"title\":\"Optical evaluation of internal damage to human hair based on second near-infrared window polarization microscopy\",\"authors\":\"Tomonobu M. Watanabe, Seiko Ueda, Saki Ishida, Go Shioi, Junichi Kaneshiro, Michi Magari\",\"doi\":\"10.1111/ics.12970\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Objective</h3>\\n \\n <p>Hair beauty treatments glorify human life. As a side effect, there is a risk of deteriorating the health of the hair. Optically polarized microscopy has been used for many decades to evaluate hair conditions owing to its ease of use and low operating costs. However, the low biopermeability of light hinders the observation of detailed structures inside hair. The aim of this study is to establish an evaluation technique of internal damages in a hair by utilizing a near-infrared (NIR) light with a wavelength of 1000–1600 nm, called “second NIR window”.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>We built a laser scanning transmission microscope system with an indium gallium arsenide detector, a 1064 nm laser source, and optical circular polarization to visualize the anisotropy characterization of keratin fibres in hair. Samples of Asian black hair before and after bleaching, after permanent-waving, after lithium bromide (LiBr) treatment, and after heating was observed. Some parameters reflecting intra-hair damage were quantitatively compared with the parameters in digitally recorded images with analytical developments.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>The light transmittance of black hair was dramatically improved by utilizing the second NIR window. Numerical analysis of circular polarization in hair quantified the internal damage in chemically or thermally treated hair and found two different types of damage. The present method enabled quantitative evaluation of the condition changes in the cortex; for example, a decrease in circular polarizability by LiBr treatment and restoration by replacing the LiBr solution with water. In addition, black speckles were observed after the heat treatment. Longer heating and wetting times increased the appearance probability and size of the speckles. According to quantitative analyses, the emergence of black spots was independent of polarizability changes, indicating that they were not pores.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusion</h3>\\n \\n <p>Circular polarization microscopy based on near-infrared optics in the second NIR window provides an effective evaluation method for quantifying intra-hair damage caused by cosmetic treatments. The present method provides noninvasive, easy, and inexpensive hair evaluation and has potential as a gold standard in hair care research/medical fields.</p>\\n </section>\\n </div>\",\"PeriodicalId\":13936,\"journal\":{\"name\":\"International Journal of Cosmetic Science\",\"volume\":\"46 6\",\"pages\":\"850-864\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ics.12970\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Cosmetic Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ics.12970\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"DERMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cosmetic Science","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ics.12970","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DERMATOLOGY","Score":null,"Total":0}
Optical evaluation of internal damage to human hair based on second near-infrared window polarization microscopy
Objective
Hair beauty treatments glorify human life. As a side effect, there is a risk of deteriorating the health of the hair. Optically polarized microscopy has been used for many decades to evaluate hair conditions owing to its ease of use and low operating costs. However, the low biopermeability of light hinders the observation of detailed structures inside hair. The aim of this study is to establish an evaluation technique of internal damages in a hair by utilizing a near-infrared (NIR) light with a wavelength of 1000–1600 nm, called “second NIR window”.
Methods
We built a laser scanning transmission microscope system with an indium gallium arsenide detector, a 1064 nm laser source, and optical circular polarization to visualize the anisotropy characterization of keratin fibres in hair. Samples of Asian black hair before and after bleaching, after permanent-waving, after lithium bromide (LiBr) treatment, and after heating was observed. Some parameters reflecting intra-hair damage were quantitatively compared with the parameters in digitally recorded images with analytical developments.
Results
The light transmittance of black hair was dramatically improved by utilizing the second NIR window. Numerical analysis of circular polarization in hair quantified the internal damage in chemically or thermally treated hair and found two different types of damage. The present method enabled quantitative evaluation of the condition changes in the cortex; for example, a decrease in circular polarizability by LiBr treatment and restoration by replacing the LiBr solution with water. In addition, black speckles were observed after the heat treatment. Longer heating and wetting times increased the appearance probability and size of the speckles. According to quantitative analyses, the emergence of black spots was independent of polarizability changes, indicating that they were not pores.
Conclusion
Circular polarization microscopy based on near-infrared optics in the second NIR window provides an effective evaluation method for quantifying intra-hair damage caused by cosmetic treatments. The present method provides noninvasive, easy, and inexpensive hair evaluation and has potential as a gold standard in hair care research/medical fields.
期刊介绍:
The Journal publishes original refereed papers, review papers and correspondence in the fields of cosmetic research. It is read by practising cosmetic scientists and dermatologists, as well as specialists in more diverse disciplines that are developing new products which contact the skin, hair, nails or mucous membranes.
The aim of the Journal is to present current scientific research, both pure and applied, in: cosmetics, toiletries, perfumery and allied fields. Areas that are of particular interest include: studies in skin physiology and interactions with cosmetic ingredients, innovation in claim substantiation methods (in silico, in vitro, ex vivo, in vivo), human and in vitro safety testing of cosmetic ingredients and products, physical chemistry and technology of emulsion and dispersed systems, theory and application of surfactants, new developments in olfactive research, aerosol technology and selected aspects of analytical chemistry.