IFRD1通过抑制组蛋白H1.0的噬核作用,促进肿瘤细胞在谷氨酰胺饥饿状态下 "低成本 "存活。

IF 13 1区 生物学 Q1 CELL BIOLOGY Cell Discovery Pub Date : 2024-05-28 DOI:10.1038/s41421-024-00668-x
Yabin Huang, Fanzheng Meng, Taofei Zeng, Rick Francis Thorne, Lifang He, Qingrui Zha, Hairui Li, Hong Liu, Chuandong Lang, Wanxiang Xiong, Shixiang Pan, Dalong Yin, Mian Wu, Xuedan Sun, Lianxin Liu
{"title":"IFRD1通过抑制组蛋白H1.0的噬核作用,促进肿瘤细胞在谷氨酰胺饥饿状态下 \"低成本 \"存活。","authors":"Yabin Huang, Fanzheng Meng, Taofei Zeng, Rick Francis Thorne, Lifang He, Qingrui Zha, Hairui Li, Hong Liu, Chuandong Lang, Wanxiang Xiong, Shixiang Pan, Dalong Yin, Mian Wu, Xuedan Sun, Lianxin Liu","doi":"10.1038/s41421-024-00668-x","DOIUrl":null,"url":null,"abstract":"<p><p>Glutamine addiction represents a metabolic vulnerability of cancer cells; however, effective therapeutic targeting of the pathways involved remains to be realized. Here, we disclose the critical role of interferon-related developmental regulator 1 (IFRD1) in the adaptive survival of hepatocellular carcinoma (HCC) cells during glutamine starvation. IFRD1 is induced under glutamine starvation to inhibit autophagy by promoting the proteasomal degradation of the key autophagy regulator ATG14 in a TRIM21-dependent manner. Conversely, targeting IFRD1 in the glutamine-deprived state increases autophagy flux, triggering cancer cell exhaustive death. This effect largely results from the nucleophilic degradation of histone H1.0 and the ensuing unchecked increases in ribosome and protein biosynthesis associated with globally enhanced chromatin accessibility. Intriguingly, IFRD1 depletion in preclinical HCC models synergizes with the treatment of the glutaminase-1 selective inhibitor CB-839 to potentiate the effect of limiting glutamine. Together, our findings reveal how IFRD1 supports the adaptive survival of cancer cells under glutamine starvation, further highlighting the potential of IFRD1 as a therapeutic target in anti-cancer applications.</p>","PeriodicalId":9674,"journal":{"name":"Cell Discovery","volume":"10 1","pages":"57"},"PeriodicalIF":13.0000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11130292/pdf/","citationCount":"0","resultStr":"{\"title\":\"IFRD1 promotes tumor cells \\\"low-cost\\\" survival under glutamine starvation via inhibiting histone H1.0 nucleophagy.\",\"authors\":\"Yabin Huang, Fanzheng Meng, Taofei Zeng, Rick Francis Thorne, Lifang He, Qingrui Zha, Hairui Li, Hong Liu, Chuandong Lang, Wanxiang Xiong, Shixiang Pan, Dalong Yin, Mian Wu, Xuedan Sun, Lianxin Liu\",\"doi\":\"10.1038/s41421-024-00668-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glutamine addiction represents a metabolic vulnerability of cancer cells; however, effective therapeutic targeting of the pathways involved remains to be realized. Here, we disclose the critical role of interferon-related developmental regulator 1 (IFRD1) in the adaptive survival of hepatocellular carcinoma (HCC) cells during glutamine starvation. IFRD1 is induced under glutamine starvation to inhibit autophagy by promoting the proteasomal degradation of the key autophagy regulator ATG14 in a TRIM21-dependent manner. Conversely, targeting IFRD1 in the glutamine-deprived state increases autophagy flux, triggering cancer cell exhaustive death. This effect largely results from the nucleophilic degradation of histone H1.0 and the ensuing unchecked increases in ribosome and protein biosynthesis associated with globally enhanced chromatin accessibility. Intriguingly, IFRD1 depletion in preclinical HCC models synergizes with the treatment of the glutaminase-1 selective inhibitor CB-839 to potentiate the effect of limiting glutamine. Together, our findings reveal how IFRD1 supports the adaptive survival of cancer cells under glutamine starvation, further highlighting the potential of IFRD1 as a therapeutic target in anti-cancer applications.</p>\",\"PeriodicalId\":9674,\"journal\":{\"name\":\"Cell Discovery\",\"volume\":\"10 1\",\"pages\":\"57\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11130292/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Discovery\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41421-024-00668-x\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Discovery","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41421-024-00668-x","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

谷氨酰胺成瘾是癌细胞的代谢弱点;然而,针对相关通路的有效治疗仍有待实现。在这里,我们揭示了干扰素相关发育调节因子1(IFRD1)在谷氨酰胺饥饿期间肝细胞癌(HCC)细胞的适应性生存中的关键作用。IFRD1在谷氨酰胺饥饿状态下被诱导,以TRIM21依赖的方式促进关键自噬调节因子ATG14的蛋白酶体降解,从而抑制自噬。相反,在谷氨酰胺缺乏状态下靶向 IFRD1 会增加自噬通量,引发癌细胞衰竭性死亡。这种效应主要源于组蛋白 H1.0 的亲核降解,以及随之而来的核糖体和蛋白质生物合成的无节制增加,这与染色质可及性的全面提高有关。耐人寻味的是,临床前 HCC 模型中 IFRD1 的消耗与谷氨酰胺酶-1 选择性抑制剂 CB-839 的治疗协同增效,从而增强限制谷氨酰胺的效果。我们的研究结果揭示了 IFRD1 如何在谷氨酰胺饥饿条件下支持癌细胞的适应性生存,进一步凸显了 IFRD1 作为抗癌治疗靶点的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
IFRD1 promotes tumor cells "low-cost" survival under glutamine starvation via inhibiting histone H1.0 nucleophagy.

Glutamine addiction represents a metabolic vulnerability of cancer cells; however, effective therapeutic targeting of the pathways involved remains to be realized. Here, we disclose the critical role of interferon-related developmental regulator 1 (IFRD1) in the adaptive survival of hepatocellular carcinoma (HCC) cells during glutamine starvation. IFRD1 is induced under glutamine starvation to inhibit autophagy by promoting the proteasomal degradation of the key autophagy regulator ATG14 in a TRIM21-dependent manner. Conversely, targeting IFRD1 in the glutamine-deprived state increases autophagy flux, triggering cancer cell exhaustive death. This effect largely results from the nucleophilic degradation of histone H1.0 and the ensuing unchecked increases in ribosome and protein biosynthesis associated with globally enhanced chromatin accessibility. Intriguingly, IFRD1 depletion in preclinical HCC models synergizes with the treatment of the glutaminase-1 selective inhibitor CB-839 to potentiate the effect of limiting glutamine. Together, our findings reveal how IFRD1 supports the adaptive survival of cancer cells under glutamine starvation, further highlighting the potential of IFRD1 as a therapeutic target in anti-cancer applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Discovery
Cell Discovery Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
24.20
自引率
0.60%
发文量
120
审稿时长
20 weeks
期刊介绍: Cell Discovery is a cutting-edge, open access journal published by Springer Nature in collaboration with the Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences (CAS). Our aim is to provide a dynamic and accessible platform for scientists to showcase their exceptional original research. Cell Discovery covers a wide range of topics within the fields of molecular and cell biology. We eagerly publish results of great significance and that are of broad interest to the scientific community. With an international authorship and a focus on basic life sciences, our journal is a valued member of Springer Nature's prestigious Molecular Cell Biology journals. In summary, Cell Discovery offers a fresh approach to scholarly publishing, enabling scientists from around the world to share their exceptional findings in molecular and cell biology.
期刊最新文献
Characterization of the landscape of the intratumoral microbiota reveals that Streptococcus anginosus increases the risk of gastric cancer initiation and progression. Structural mechanisms of human sodium-coupled high-affinity choline transporter CHT1. Cryo-EM structure of PML RBCC dimer reveals CC-mediated octopus-like nuclear body assembly mechanism. Sodium oligomannate disrupts the adherence of Ribhigh bacteria to gut epithelia to block SAA-triggered Th1 inflammation in 5XFAD transgenic mice. The -KTS isoform of Wt1 induces the transformation of Leydig cells into granulosa-like cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1