Navid Sobhi, Mirsaeed Abdollahi, Ali Arman, Ata Mahmoodpoor, Ali Jafarizadeh
{"title":"甲醇诱发的视神经病变:分子奥秘、公共卫生视角、临床见解和治疗策略。","authors":"Navid Sobhi, Mirsaeed Abdollahi, Ali Arman, Ata Mahmoodpoor, Ali Jafarizadeh","doi":"10.1080/08820538.2024.2358310","DOIUrl":null,"url":null,"abstract":"<p><p>Methanol-induced optic neuropathy (MION) represents a critical public health issue, particularly prevalent in lower socioeconomic populations and regions with restricted alcohol access. MION, characterized by irreversible visual impairment, arises from the toxic metabolization of methanol into formaldehyde and formic acid, leading to mitochondrial oxidative phosphorylation inhibition, oxidative stress, and subsequent neurotoxicity. The pathogenesis involves axonal and glial cell degeneration within the optic nerve and potential retinal damage. Despite advancements in therapeutic interventions, a significant proportion of affected individuals endure persistent visual sequelae. The study comprehensively investigates the pathophysiology of MION, encompassing the absorption and metabolism of methanol, subsequent systemic effects, and ocular impacts. Histopathological changes, including alterations in retinal layers and proteins, Müller cell dysfunction, and visual symptoms, are meticulously examined to provide insights into the disease mechanism. Furthermore, preventive measures and public health perspectives are discussed to highlight the importance of awareness and intervention strategies. Therapeutic approaches, such as decontamination procedures, ethanol and fomepizole administration, hemodialysis, intravenous fluids, electrolyte balance management, nutritional therapy, corticosteroid therapy, and erythropoietin (EPO) treatment, are evaluated for their efficacy in managing MION. This comprehensive review underscores the need for increased awareness, improved diagnostic strategies, and more effective treatments to mitigate the impact of MION on global health.</p>","PeriodicalId":21702,"journal":{"name":"Seminars in Ophthalmology","volume":" ","pages":"1-12"},"PeriodicalIF":1.9000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Methanol Induced Optic Neuropathy: Molecular Mysteries, Public Health Perspective, Clinical Insights and Treatment Strategies.\",\"authors\":\"Navid Sobhi, Mirsaeed Abdollahi, Ali Arman, Ata Mahmoodpoor, Ali Jafarizadeh\",\"doi\":\"10.1080/08820538.2024.2358310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Methanol-induced optic neuropathy (MION) represents a critical public health issue, particularly prevalent in lower socioeconomic populations and regions with restricted alcohol access. MION, characterized by irreversible visual impairment, arises from the toxic metabolization of methanol into formaldehyde and formic acid, leading to mitochondrial oxidative phosphorylation inhibition, oxidative stress, and subsequent neurotoxicity. The pathogenesis involves axonal and glial cell degeneration within the optic nerve and potential retinal damage. Despite advancements in therapeutic interventions, a significant proportion of affected individuals endure persistent visual sequelae. The study comprehensively investigates the pathophysiology of MION, encompassing the absorption and metabolism of methanol, subsequent systemic effects, and ocular impacts. Histopathological changes, including alterations in retinal layers and proteins, Müller cell dysfunction, and visual symptoms, are meticulously examined to provide insights into the disease mechanism. Furthermore, preventive measures and public health perspectives are discussed to highlight the importance of awareness and intervention strategies. Therapeutic approaches, such as decontamination procedures, ethanol and fomepizole administration, hemodialysis, intravenous fluids, electrolyte balance management, nutritional therapy, corticosteroid therapy, and erythropoietin (EPO) treatment, are evaluated for their efficacy in managing MION. This comprehensive review underscores the need for increased awareness, improved diagnostic strategies, and more effective treatments to mitigate the impact of MION on global health.</p>\",\"PeriodicalId\":21702,\"journal\":{\"name\":\"Seminars in Ophthalmology\",\"volume\":\" \",\"pages\":\"1-12\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seminars in Ophthalmology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/08820538.2024.2358310\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seminars in Ophthalmology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08820538.2024.2358310","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
Methanol Induced Optic Neuropathy: Molecular Mysteries, Public Health Perspective, Clinical Insights and Treatment Strategies.
Methanol-induced optic neuropathy (MION) represents a critical public health issue, particularly prevalent in lower socioeconomic populations and regions with restricted alcohol access. MION, characterized by irreversible visual impairment, arises from the toxic metabolization of methanol into formaldehyde and formic acid, leading to mitochondrial oxidative phosphorylation inhibition, oxidative stress, and subsequent neurotoxicity. The pathogenesis involves axonal and glial cell degeneration within the optic nerve and potential retinal damage. Despite advancements in therapeutic interventions, a significant proportion of affected individuals endure persistent visual sequelae. The study comprehensively investigates the pathophysiology of MION, encompassing the absorption and metabolism of methanol, subsequent systemic effects, and ocular impacts. Histopathological changes, including alterations in retinal layers and proteins, Müller cell dysfunction, and visual symptoms, are meticulously examined to provide insights into the disease mechanism. Furthermore, preventive measures and public health perspectives are discussed to highlight the importance of awareness and intervention strategies. Therapeutic approaches, such as decontamination procedures, ethanol and fomepizole administration, hemodialysis, intravenous fluids, electrolyte balance management, nutritional therapy, corticosteroid therapy, and erythropoietin (EPO) treatment, are evaluated for their efficacy in managing MION. This comprehensive review underscores the need for increased awareness, improved diagnostic strategies, and more effective treatments to mitigate the impact of MION on global health.
期刊介绍:
Seminars in Ophthalmology offers current, clinically oriented reviews on the diagnosis and treatment of ophthalmic disorders. Each issue focuses on a single topic, with a primary emphasis on appropriate surgical techniques.