Alaina K Holt, Abby M Veeser, Justin L Poklis, Michelle R Peace
{"title":"电子液体中的乙酸乙酯:对呼气测试的影响。","authors":"Alaina K Holt, Abby M Veeser, Justin L Poklis, Michelle R Peace","doi":"10.1093/jat/bkae044","DOIUrl":null,"url":null,"abstract":"<p><p>Electronic cigarette liquids (e-liquids) can contain a variety of chemicals to impart flavors, smells and pharmacological effects. Surveillance studies have identified hundreds of chemicals used in e-liquids that have known health and safety implications. Ethyl acetate has been identified as a common constituent of e-liquids. Ethyl acetate is rapidly hydrolyzed to ethanol in vivo. Animal studies have demonstrated that inhaling >2,000 mg/L ethyl acetate can lead to the accumulation of ethanol in the blood at concentrations >1,000 mg/L, or 0.10%. A \"Heisenberg\" e-liquid was submitted to the Laboratory for Forensic Toxicology Research for analysis after a random workplace drug test resulted in a breath test result of 0.019% for a safety-sensitive position employee. Analysis of this sample resulted in the detection of 1,488 ± 6 mg/L ethyl acetate. The evaluation of purchased \"Heisenberg\" e-liquids determined that these products contain ethyl acetate. The identification of ethyl acetate in e-liquids demonstrates poor regulatory oversight and enforcement that potentially has consequences for breath ethanol testing and interpretations. The accumulation of ethanol in the breath from the ingestion/inhalation of ethyl acetate from an e-liquid used prior to a breath test may contribute to the detection of ethanol.</p>","PeriodicalId":14905,"journal":{"name":"Journal of analytical toxicology","volume":" ","pages":"413-418"},"PeriodicalIF":2.3000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11245883/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ethyl acetate in e-liquids: Implications for breath testing.\",\"authors\":\"Alaina K Holt, Abby M Veeser, Justin L Poklis, Michelle R Peace\",\"doi\":\"10.1093/jat/bkae044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Electronic cigarette liquids (e-liquids) can contain a variety of chemicals to impart flavors, smells and pharmacological effects. Surveillance studies have identified hundreds of chemicals used in e-liquids that have known health and safety implications. Ethyl acetate has been identified as a common constituent of e-liquids. Ethyl acetate is rapidly hydrolyzed to ethanol in vivo. Animal studies have demonstrated that inhaling >2,000 mg/L ethyl acetate can lead to the accumulation of ethanol in the blood at concentrations >1,000 mg/L, or 0.10%. A \\\"Heisenberg\\\" e-liquid was submitted to the Laboratory for Forensic Toxicology Research for analysis after a random workplace drug test resulted in a breath test result of 0.019% for a safety-sensitive position employee. Analysis of this sample resulted in the detection of 1,488 ± 6 mg/L ethyl acetate. The evaluation of purchased \\\"Heisenberg\\\" e-liquids determined that these products contain ethyl acetate. The identification of ethyl acetate in e-liquids demonstrates poor regulatory oversight and enforcement that potentially has consequences for breath ethanol testing and interpretations. The accumulation of ethanol in the breath from the ingestion/inhalation of ethyl acetate from an e-liquid used prior to a breath test may contribute to the detection of ethanol.</p>\",\"PeriodicalId\":14905,\"journal\":{\"name\":\"Journal of analytical toxicology\",\"volume\":\" \",\"pages\":\"413-418\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11245883/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of analytical toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/jat/bkae044\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of analytical toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jat/bkae044","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Ethyl acetate in e-liquids: Implications for breath testing.
Electronic cigarette liquids (e-liquids) can contain a variety of chemicals to impart flavors, smells and pharmacological effects. Surveillance studies have identified hundreds of chemicals used in e-liquids that have known health and safety implications. Ethyl acetate has been identified as a common constituent of e-liquids. Ethyl acetate is rapidly hydrolyzed to ethanol in vivo. Animal studies have demonstrated that inhaling >2,000 mg/L ethyl acetate can lead to the accumulation of ethanol in the blood at concentrations >1,000 mg/L, or 0.10%. A "Heisenberg" e-liquid was submitted to the Laboratory for Forensic Toxicology Research for analysis after a random workplace drug test resulted in a breath test result of 0.019% for a safety-sensitive position employee. Analysis of this sample resulted in the detection of 1,488 ± 6 mg/L ethyl acetate. The evaluation of purchased "Heisenberg" e-liquids determined that these products contain ethyl acetate. The identification of ethyl acetate in e-liquids demonstrates poor regulatory oversight and enforcement that potentially has consequences for breath ethanol testing and interpretations. The accumulation of ethanol in the breath from the ingestion/inhalation of ethyl acetate from an e-liquid used prior to a breath test may contribute to the detection of ethanol.
期刊介绍:
The Journal of Analytical Toxicology (JAT) is an international toxicology journal devoted to the timely dissemination of scientific communications concerning potentially toxic substances and drug identification, isolation, and quantitation.
Since its inception in 1977, the Journal of Analytical Toxicology has striven to present state-of-the-art techniques used in toxicology labs. The peer-review process provided by the distinguished members of the Editorial Advisory Board ensures the high-quality and integrity of articles published in the Journal of Analytical Toxicology. Timely presentation of the latest toxicology developments is ensured through Technical Notes, Case Reports, and Letters to the Editor.