木薯冷胁迫反应中的 DNA 甲基化动态修饰

IF 3.4 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Genomics Pub Date : 2024-05-26 DOI:10.1016/j.ygeno.2024.110871
Guangrun Yu , Baowang Zhang , Qi Chen , Zequan Huang , Baohong Zhang , Kai Wang , Jinlei Han
{"title":"木薯冷胁迫反应中的 DNA 甲基化动态修饰","authors":"Guangrun Yu ,&nbsp;Baowang Zhang ,&nbsp;Qi Chen ,&nbsp;Zequan Huang ,&nbsp;Baohong Zhang ,&nbsp;Kai Wang ,&nbsp;Jinlei Han","doi":"10.1016/j.ygeno.2024.110871","DOIUrl":null,"url":null,"abstract":"<div><p>Cassava, a crucial tropical crop, faces challenges from cold stress, necessitating an exploration of its molecular response. Here, we investigated the role of DNA methylation in moderating the response to moderate cold stress (10 °C) in cassava. Using whole-genome bisulfite sequencing, we examined DNA methylation patterns in leaf blades and petioles under control conditions, 5 h, and 48 h of cold stress. Tissue-specific responses were observed, with leaf blades exhibiting subtle changes, while petioles displayed a pronounced decrease in methylation levels under cold stress. We identified cold stress-induced differentially methylated regions (DMRs) that demonstrated both tissue and treatment specificity. Importantly, these DMRs were enriched in genes with altered expression, implying functional relevance. The cold-response transcription factor ERF105 associated with DMRs emerged as a significant and conserved regulator across tissues and treatments. Furthermore, we investigated DNA methylation dynamics in transposable elements, emphasizing the sensitivity of MITEs with bHLH binding motifs to cold stress. These findings provide insights into the epigenetic regulation of response to cold stress in cassava, contributing to an understanding of the molecular mechanisms underlying stress adaptation in this tropical plant.</p></div>","PeriodicalId":12521,"journal":{"name":"Genomics","volume":"116 4","pages":"Article 110871"},"PeriodicalIF":3.4000,"publicationDate":"2024-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0888754324000922/pdfft?md5=e262674eac04fa817b70bd6048696df7&pid=1-s2.0-S0888754324000922-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Dynamic DNA methylation modifications in the cold stress response of cassava\",\"authors\":\"Guangrun Yu ,&nbsp;Baowang Zhang ,&nbsp;Qi Chen ,&nbsp;Zequan Huang ,&nbsp;Baohong Zhang ,&nbsp;Kai Wang ,&nbsp;Jinlei Han\",\"doi\":\"10.1016/j.ygeno.2024.110871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cassava, a crucial tropical crop, faces challenges from cold stress, necessitating an exploration of its molecular response. Here, we investigated the role of DNA methylation in moderating the response to moderate cold stress (10 °C) in cassava. Using whole-genome bisulfite sequencing, we examined DNA methylation patterns in leaf blades and petioles under control conditions, 5 h, and 48 h of cold stress. Tissue-specific responses were observed, with leaf blades exhibiting subtle changes, while petioles displayed a pronounced decrease in methylation levels under cold stress. We identified cold stress-induced differentially methylated regions (DMRs) that demonstrated both tissue and treatment specificity. Importantly, these DMRs were enriched in genes with altered expression, implying functional relevance. The cold-response transcription factor ERF105 associated with DMRs emerged as a significant and conserved regulator across tissues and treatments. Furthermore, we investigated DNA methylation dynamics in transposable elements, emphasizing the sensitivity of MITEs with bHLH binding motifs to cold stress. These findings provide insights into the epigenetic regulation of response to cold stress in cassava, contributing to an understanding of the molecular mechanisms underlying stress adaptation in this tropical plant.</p></div>\",\"PeriodicalId\":12521,\"journal\":{\"name\":\"Genomics\",\"volume\":\"116 4\",\"pages\":\"Article 110871\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0888754324000922/pdfft?md5=e262674eac04fa817b70bd6048696df7&pid=1-s2.0-S0888754324000922-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0888754324000922\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888754324000922","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

木薯是一种重要的热带作物,面临着冷胁迫的挑战,因此有必要探索其分子响应。在这里,我们研究了DNA甲基化在调节木薯对中度冷胁迫(10 °C)的反应中的作用。利用全基因组亚硫酸氢盐测序技术,我们研究了在对照条件、5 小时和 48 小时冷胁迫条件下叶片和叶柄的 DNA 甲基化模式。观察到了组织特异性反应,叶片表现出微妙的变化,而叶柄在冷胁迫下的甲基化水平明显下降。我们确定了冷胁迫诱导的差异甲基化区域(DMRs),这些区域显示了组织和处理的特异性。重要的是,这些甲基化区域富集在表达发生变化的基因中,这意味着它们具有功能相关性。与DMRs相关的冷反应转录因子ERF105是跨组织和跨处理的重要且保守的调节因子。此外,我们还研究了转座元件的DNA甲基化动态,强调了具有bHLH结合基序的MITE对冷胁迫的敏感性。这些发现深入揭示了木薯对冷胁迫反应的表观遗传调控,有助于了解这种热带植物对胁迫适应的分子机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic DNA methylation modifications in the cold stress response of cassava

Cassava, a crucial tropical crop, faces challenges from cold stress, necessitating an exploration of its molecular response. Here, we investigated the role of DNA methylation in moderating the response to moderate cold stress (10 °C) in cassava. Using whole-genome bisulfite sequencing, we examined DNA methylation patterns in leaf blades and petioles under control conditions, 5 h, and 48 h of cold stress. Tissue-specific responses were observed, with leaf blades exhibiting subtle changes, while petioles displayed a pronounced decrease in methylation levels under cold stress. We identified cold stress-induced differentially methylated regions (DMRs) that demonstrated both tissue and treatment specificity. Importantly, these DMRs were enriched in genes with altered expression, implying functional relevance. The cold-response transcription factor ERF105 associated with DMRs emerged as a significant and conserved regulator across tissues and treatments. Furthermore, we investigated DNA methylation dynamics in transposable elements, emphasizing the sensitivity of MITEs with bHLH binding motifs to cold stress. These findings provide insights into the epigenetic regulation of response to cold stress in cassava, contributing to an understanding of the molecular mechanisms underlying stress adaptation in this tropical plant.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genomics
Genomics 生物-生物工程与应用微生物
CiteScore
9.60
自引率
2.30%
发文量
260
审稿时长
60 days
期刊介绍: Genomics is a forum for describing the development of genome-scale technologies and their application to all areas of biological investigation. As a journal that has evolved with the field that carries its name, Genomics focuses on the development and application of cutting-edge methods, addressing fundamental questions with potential interest to a wide audience. Our aim is to publish the highest quality research and to provide authors with rapid, fair and accurate review and publication of manuscripts falling within our scope.
期刊最新文献
Identification of CCR7 as a potential biomarker in polycystic ovary syndrome through transcriptome sequencing and integrated bioinformatics. Rapid sequencing and identification for 18-STRs long amplicon panel using portable devices and nanopore sequencer. Retraction notice to "LncRNA HOTAIR regulates the expression of E-cadherin to affect nasopharyngeal carcinoma progression by recruiting histone methylase EZH2 to mediate H3K27 trimethylation" [Genomics Volume 113, Issue 4, July 2021, Pages 2276-2289]. "Genome-based in silico assessment of biosynthetic gene clusters in Planctomycetota: Evidences of its wide divergent nature". Unveiling the intricate structural variability induced by repeat-mediated recombination in the complete mitochondrial genome of Cuscuta gronovii Willd.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1