Kasra Mokhtarpour, Milad Akbarzadehmoallemkolaei, Nima Rezaei
{"title":"病毒攻击脑肿瘤:溶瘤病毒疗法的潜力。","authors":"Kasra Mokhtarpour, Milad Akbarzadehmoallemkolaei, Nima Rezaei","doi":"10.1007/s13365-024-01209-8","DOIUrl":null,"url":null,"abstract":"<p><p>Managing malignant brain tumors remains a significant therapeutic hurdle that necessitates further research to comprehend their treatment potential fully. Oncolytic viruses (OVs) offer many opportunities for predicting and combating tumors through several mechanisms, with both preclinical and clinical studies demonstrating potential. OV therapy has emerged as a potent and effective method with a dual mechanism. Developing innovative and effective strategies for virus transduction, coupled with immune checkpoint inhibitors or chemotherapy drugs, strengthens this new technique. Furthermore, the discovery and creation of new OVs that can seamlessly integrate gene therapy strategies, such as cytotoxic, anti-angiogenic, and immunostimulatory, are promising advancements. This review presents an overview of the latest advancements in OVs transduction for brain cancer, focusing on the safety and effectiveness of G207, G47Δ, M032, rQNestin34.5v.2, C134, DNX-2401, Ad-TD-nsIL12, NSC-CRAd-S-p7, TG6002, and PVSRIPO. These are evaluated in both preclinical and clinical models of various brain tumors.</p>","PeriodicalId":16665,"journal":{"name":"Journal of NeuroVirology","volume":" ","pages":"229-250"},"PeriodicalIF":2.3000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A viral attack on brain tumors: the potential of oncolytic virus therapy.\",\"authors\":\"Kasra Mokhtarpour, Milad Akbarzadehmoallemkolaei, Nima Rezaei\",\"doi\":\"10.1007/s13365-024-01209-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Managing malignant brain tumors remains a significant therapeutic hurdle that necessitates further research to comprehend their treatment potential fully. Oncolytic viruses (OVs) offer many opportunities for predicting and combating tumors through several mechanisms, with both preclinical and clinical studies demonstrating potential. OV therapy has emerged as a potent and effective method with a dual mechanism. Developing innovative and effective strategies for virus transduction, coupled with immune checkpoint inhibitors or chemotherapy drugs, strengthens this new technique. Furthermore, the discovery and creation of new OVs that can seamlessly integrate gene therapy strategies, such as cytotoxic, anti-angiogenic, and immunostimulatory, are promising advancements. This review presents an overview of the latest advancements in OVs transduction for brain cancer, focusing on the safety and effectiveness of G207, G47Δ, M032, rQNestin34.5v.2, C134, DNX-2401, Ad-TD-nsIL12, NSC-CRAd-S-p7, TG6002, and PVSRIPO. These are evaluated in both preclinical and clinical models of various brain tumors.</p>\",\"PeriodicalId\":16665,\"journal\":{\"name\":\"Journal of NeuroVirology\",\"volume\":\" \",\"pages\":\"229-250\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of NeuroVirology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13365-024-01209-8\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of NeuroVirology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13365-024-01209-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
治疗恶性脑肿瘤仍然是一个重大的治疗障碍,需要进一步研究才能充分了解其治疗潜力。肿瘤溶解病毒(OV)通过多种机制为预测和抗击肿瘤提供了许多机会,临床前和临床研究都证明了其潜力。OV 疗法已成为一种具有双重机制的强效方法。开发创新而有效的病毒转导策略,并与免疫检查点抑制剂或化疗药物相结合,可以加强这种新技术。此外,发现和创造能无缝整合细胞毒性、抗血管生成和免疫刺激等基因治疗策略的新型 OV 也是很有希望的进展。本综述概述了脑癌 OVs 转导的最新进展,重点介绍 G207、G47Δ、M032、rQNestin34.5v.2、C134、DNX-2401、Ad-TD-nsIL12、NSC-CRAd-S-p7、TG6002 和 PVSRIPO 的安全性和有效性。这些药物已在各种脑肿瘤的临床前和临床模型中进行了评估。
A viral attack on brain tumors: the potential of oncolytic virus therapy.
Managing malignant brain tumors remains a significant therapeutic hurdle that necessitates further research to comprehend their treatment potential fully. Oncolytic viruses (OVs) offer many opportunities for predicting and combating tumors through several mechanisms, with both preclinical and clinical studies demonstrating potential. OV therapy has emerged as a potent and effective method with a dual mechanism. Developing innovative and effective strategies for virus transduction, coupled with immune checkpoint inhibitors or chemotherapy drugs, strengthens this new technique. Furthermore, the discovery and creation of new OVs that can seamlessly integrate gene therapy strategies, such as cytotoxic, anti-angiogenic, and immunostimulatory, are promising advancements. This review presents an overview of the latest advancements in OVs transduction for brain cancer, focusing on the safety and effectiveness of G207, G47Δ, M032, rQNestin34.5v.2, C134, DNX-2401, Ad-TD-nsIL12, NSC-CRAd-S-p7, TG6002, and PVSRIPO. These are evaluated in both preclinical and clinical models of various brain tumors.
期刊介绍:
The Journal of NeuroVirology (JNV) provides a unique platform for the publication of high-quality basic science and clinical studies on the molecular biology and pathogenesis of viral infections of the nervous system, and for reporting on the development of novel therapeutic strategies using neurotropic viral vectors. The Journal also emphasizes publication of non-viral infections that affect the central nervous system. The Journal publishes original research articles, reviews, case reports, coverage of various scientific meetings, along with supplements and special issues on selected subjects.
The Journal is currently accepting submissions of original work from the following basic and clinical research areas: Aging & Neurodegeneration, Apoptosis, CNS Signal Transduction, Emerging CNS Infections, Molecular Virology, Neural-Immune Interaction, Novel Diagnostics, Novel Therapeutics, Stem Cell Biology, Transmissable Encephalopathies/Prion, Vaccine Development, Viral Genomics, Viral Neurooncology, Viral Neurochemistry, Viral Neuroimmunology, Viral Neuropharmacology.