{"title":"直击爱泼斯坦-巴氏病毒要害:探索 siRNA 治疗缓解爱泼斯坦-巴氏病毒诱发的多发性硬化症的计算方法。","authors":"Taiwo Ooreoluwa Ojo, Oluwabamise Emmanuel Elegbeleye, Olawale Quadri Bolaji, Temitope Isaac Adelusi, Elijah Kolawole Oladipo, Matthew Oluwaseun Olawuyi, Bukola Oluwafunmilayo Afolayan, Adegboye Oyewole Oyaronbi, Taiwo Temitope Ogunjobi, Moyosoluwa Precious Oyewole, Kolade Pelumi Folorunso, Abdeen Tunde Ogunlana","doi":"10.1007/s10048-024-00764-w","DOIUrl":null,"url":null,"abstract":"<p><p>Multiple sclerosis (MS), an intricate neurological disorder, continues to challenge our understanding of the pivotal interplay between the immune system and the central nervous system (CNS). This condition arises from the immune system's misdirected attack on nerve fiber protection, known as myelin sheath, alongside nerve fibers themselves. This enigmatic condition, characterized by demyelination and varied clinical manifestations, prompts exploration into its multifaceted etiology and potential therapeutic avenues. Research has revealed a potential connection between Epstein Barr virus (EBV), specifically Epstein Barr Nuclear Antigen 1 (EBNA-1), and MS. The immune response to EBNA-1 antigen triggers the production of anti-EBNA-1 molecules, including IgG that identify a similar amino acid sequence to EBNA-1 in myelin, inadvertently targeting myelin sheath and contributing to MS progression. Currently, no treatment exists for EBNA-1-induced MS apart from symptom management. Addressing this, a novel potential therapeutic avenue utilizing small interference RNAs (siRNA) has been designed. By targeting the conserved EBNA-1 gene sequences in EBV types 1 and 2, five potential siRNAs were identified in our analysis. Thorough evaluations encompassing off-target binding, thermodynamics and secondary structure elucidation, efficacy prediction, siRNA-mRNA sequence binding affinity exploration, melting temperature, and docking of siRNAs with human argonaute protein 2 (AGO2) were conducted to elucidate the siRNAs efficiency. These designed siRNA molecules harnessed promising silencing activity in the EBNA-1 gene encoding the EBNA-1 antigen protein and thus have the potential to mitigate the severity of this dangerous virus.</p>","PeriodicalId":56106,"journal":{"name":"Neurogenetics","volume":" ","pages":"263-275"},"PeriodicalIF":1.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hitting Epstein Barr virus where it hurts: computational methods exploration for siRNA therapy in alleviating Epstein Barr virus-induced multiple sclerosis.\",\"authors\":\"Taiwo Ooreoluwa Ojo, Oluwabamise Emmanuel Elegbeleye, Olawale Quadri Bolaji, Temitope Isaac Adelusi, Elijah Kolawole Oladipo, Matthew Oluwaseun Olawuyi, Bukola Oluwafunmilayo Afolayan, Adegboye Oyewole Oyaronbi, Taiwo Temitope Ogunjobi, Moyosoluwa Precious Oyewole, Kolade Pelumi Folorunso, Abdeen Tunde Ogunlana\",\"doi\":\"10.1007/s10048-024-00764-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multiple sclerosis (MS), an intricate neurological disorder, continues to challenge our understanding of the pivotal interplay between the immune system and the central nervous system (CNS). This condition arises from the immune system's misdirected attack on nerve fiber protection, known as myelin sheath, alongside nerve fibers themselves. This enigmatic condition, characterized by demyelination and varied clinical manifestations, prompts exploration into its multifaceted etiology and potential therapeutic avenues. Research has revealed a potential connection between Epstein Barr virus (EBV), specifically Epstein Barr Nuclear Antigen 1 (EBNA-1), and MS. The immune response to EBNA-1 antigen triggers the production of anti-EBNA-1 molecules, including IgG that identify a similar amino acid sequence to EBNA-1 in myelin, inadvertently targeting myelin sheath and contributing to MS progression. Currently, no treatment exists for EBNA-1-induced MS apart from symptom management. Addressing this, a novel potential therapeutic avenue utilizing small interference RNAs (siRNA) has been designed. By targeting the conserved EBNA-1 gene sequences in EBV types 1 and 2, five potential siRNAs were identified in our analysis. Thorough evaluations encompassing off-target binding, thermodynamics and secondary structure elucidation, efficacy prediction, siRNA-mRNA sequence binding affinity exploration, melting temperature, and docking of siRNAs with human argonaute protein 2 (AGO2) were conducted to elucidate the siRNAs efficiency. These designed siRNA molecules harnessed promising silencing activity in the EBNA-1 gene encoding the EBNA-1 antigen protein and thus have the potential to mitigate the severity of this dangerous virus.</p>\",\"PeriodicalId\":56106,\"journal\":{\"name\":\"Neurogenetics\",\"volume\":\" \",\"pages\":\"263-275\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurogenetics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10048-024-00764-w\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurogenetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10048-024-00764-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Hitting Epstein Barr virus where it hurts: computational methods exploration for siRNA therapy in alleviating Epstein Barr virus-induced multiple sclerosis.
Multiple sclerosis (MS), an intricate neurological disorder, continues to challenge our understanding of the pivotal interplay between the immune system and the central nervous system (CNS). This condition arises from the immune system's misdirected attack on nerve fiber protection, known as myelin sheath, alongside nerve fibers themselves. This enigmatic condition, characterized by demyelination and varied clinical manifestations, prompts exploration into its multifaceted etiology and potential therapeutic avenues. Research has revealed a potential connection between Epstein Barr virus (EBV), specifically Epstein Barr Nuclear Antigen 1 (EBNA-1), and MS. The immune response to EBNA-1 antigen triggers the production of anti-EBNA-1 molecules, including IgG that identify a similar amino acid sequence to EBNA-1 in myelin, inadvertently targeting myelin sheath and contributing to MS progression. Currently, no treatment exists for EBNA-1-induced MS apart from symptom management. Addressing this, a novel potential therapeutic avenue utilizing small interference RNAs (siRNA) has been designed. By targeting the conserved EBNA-1 gene sequences in EBV types 1 and 2, five potential siRNAs were identified in our analysis. Thorough evaluations encompassing off-target binding, thermodynamics and secondary structure elucidation, efficacy prediction, siRNA-mRNA sequence binding affinity exploration, melting temperature, and docking of siRNAs with human argonaute protein 2 (AGO2) were conducted to elucidate the siRNAs efficiency. These designed siRNA molecules harnessed promising silencing activity in the EBNA-1 gene encoding the EBNA-1 antigen protein and thus have the potential to mitigate the severity of this dangerous virus.
期刊介绍:
Neurogenetics publishes findings that contribute to a better understanding of the genetic basis of normal and abnormal function of the nervous system. Neurogenetic disorders are the main focus of the journal. Neurogenetics therefore includes findings in humans and other organisms that help understand neurological disease mechanisms and publishes papers from many different fields such as biophysics, cell biology, human genetics, neuroanatomy, neurochemistry, neurology, neuropathology, neurosurgery and psychiatry.
All papers submitted to Neurogenetics should be of sufficient immediate importance to justify urgent publication. They should present new scientific results. Data merely confirming previously published findings are not acceptable.