Anindya Bhadra, Rubin Wei, Ruth Keogh, Victor Kipnis, Douglas Midthune, Dennis W Buckman, Ya Su, Ananya Roy Chowdhury, Raymond J Carroll
{"title":"零膨胀和多源零的测量误差模型,以及对硬零的应用。","authors":"Anindya Bhadra, Rubin Wei, Ruth Keogh, Victor Kipnis, Douglas Midthune, Dennis W Buckman, Ya Su, Ananya Roy Chowdhury, Raymond J Carroll","doi":"10.1007/s10985-024-09627-w","DOIUrl":null,"url":null,"abstract":"<p><p>We consider measurement error models for two variables observed repeatedly and subject to measurement error. One variable is continuous, while the other variable is a mixture of continuous and zero measurements. This second variable has two sources of zeros. The first source is episodic zeros, wherein some of the measurements for an individual may be zero and others positive. The second source is hard zeros, i.e., some individuals will always report zero. An example is the consumption of alcohol from alcoholic beverages: some individuals consume alcoholic beverages episodically, while others never consume alcoholic beverages. However, with a small number of repeat measurements from individuals, it is not possible to determine those who are episodic zeros and those who are hard zeros. We develop a new measurement error model for this problem, and use Bayesian methods to fit it. Simulations and data analyses are used to illustrate our methods. Extensions to parametric models and survival analysis are discussed briefly.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measurement error models with zero inflation and multiple sources of zeros, with applications to hard zeros.\",\"authors\":\"Anindya Bhadra, Rubin Wei, Ruth Keogh, Victor Kipnis, Douglas Midthune, Dennis W Buckman, Ya Su, Ananya Roy Chowdhury, Raymond J Carroll\",\"doi\":\"10.1007/s10985-024-09627-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We consider measurement error models for two variables observed repeatedly and subject to measurement error. One variable is continuous, while the other variable is a mixture of continuous and zero measurements. This second variable has two sources of zeros. The first source is episodic zeros, wherein some of the measurements for an individual may be zero and others positive. The second source is hard zeros, i.e., some individuals will always report zero. An example is the consumption of alcohol from alcoholic beverages: some individuals consume alcoholic beverages episodically, while others never consume alcoholic beverages. However, with a small number of repeat measurements from individuals, it is not possible to determine those who are episodic zeros and those who are hard zeros. We develop a new measurement error model for this problem, and use Bayesian methods to fit it. Simulations and data analyses are used to illustrate our methods. Extensions to parametric models and survival analysis are discussed briefly.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10985-024-09627-w\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-024-09627-w","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Measurement error models with zero inflation and multiple sources of zeros, with applications to hard zeros.
We consider measurement error models for two variables observed repeatedly and subject to measurement error. One variable is continuous, while the other variable is a mixture of continuous and zero measurements. This second variable has two sources of zeros. The first source is episodic zeros, wherein some of the measurements for an individual may be zero and others positive. The second source is hard zeros, i.e., some individuals will always report zero. An example is the consumption of alcohol from alcoholic beverages: some individuals consume alcoholic beverages episodically, while others never consume alcoholic beverages. However, with a small number of repeat measurements from individuals, it is not possible to determine those who are episodic zeros and those who are hard zeros. We develop a new measurement error model for this problem, and use Bayesian methods to fit it. Simulations and data analyses are used to illustrate our methods. Extensions to parametric models and survival analysis are discussed briefly.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.