Yanchen Sun, Yongchao Yin, Guang He, Gyuhyon Cha, Héctor L Ayala-Del-Río, Grizelle González, Konstantinos T Konstantinidis, Frank E Löffler
{"title":"pH 值选择热带土壤微生态系统中不同的氧化亚氮还原微生物群。","authors":"Yanchen Sun, Yongchao Yin, Guang He, Gyuhyon Cha, Héctor L Ayala-Del-Río, Grizelle González, Konstantinos T Konstantinidis, Frank E Löffler","doi":"10.1093/ismeco/ycae070","DOIUrl":null,"url":null,"abstract":"<p><p>Nitrous oxide (N<sub>2</sub>O), a greenhouse gas with ozone destruction potential, is mitigated by the microbial reduction to dinitrogen catalyzed by N<sub>2</sub>O reductase (NosZ). Bacteria with NosZ activity have been studied at circumneutral pH but the microbiology of low pH N<sub>2</sub>O reduction has remained elusive. Acidic (pH < 5) tropical forest soils were collected in the Luquillo Experimental Forest in Puerto Rico, and microcosms maintained with low (0.02 mM) and high (2 mM) N<sub>2</sub>O assessed N<sub>2</sub>O reduction at pH 4.5 and 7.3. All microcosms consumed N<sub>2</sub>O, with lag times of up to 7 months observed in microcosms with 2 mM N<sub>2</sub>O. Comparative metagenome analysis revealed that <i>Rhodocyclaceae</i> dominated in circumneutral microcosms under both N<sub>2</sub>O feeding regimes. At pH 4.5, <i>Peptococcaceae</i> dominated in high-N<sub>2</sub>O, and <i>Hyphomicrobiaceae</i> in low-N<sub>2</sub>O microcosms. Seventeen high-quality metagenome-assembled genomes (MAGs) recovered from the N<sub>2</sub>O-reducing microcosms harbored <i>nos</i> operons, with all eight MAGs derived from acidic microcosms carrying the Clade II type <i>nosZ</i> and lacking nitrite reductase genes (<i>nirS</i>/<i>K</i>). Five of the eight MAGs recovered from pH 4.5 microcosms represent novel taxa indicating an unexplored N<sub>2</sub>O-reducing diversity exists in acidic tropical soils. A survey of pH 3.5-5.7 soil metagenome datasets revealed that <i>nosZ</i> genes commonly occur, suggesting broad distribution of N<sub>2</sub>O reduction potential in acidic soils.</p>","PeriodicalId":73516,"journal":{"name":"ISME communications","volume":"4 1","pages":"ycae070"},"PeriodicalIF":5.1000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11131594/pdf/","citationCount":"0","resultStr":"{\"title\":\"pH selects for distinct N<sub>2</sub>O-reducing microbiomes in tropical soil microcosms.\",\"authors\":\"Yanchen Sun, Yongchao Yin, Guang He, Gyuhyon Cha, Héctor L Ayala-Del-Río, Grizelle González, Konstantinos T Konstantinidis, Frank E Löffler\",\"doi\":\"10.1093/ismeco/ycae070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nitrous oxide (N<sub>2</sub>O), a greenhouse gas with ozone destruction potential, is mitigated by the microbial reduction to dinitrogen catalyzed by N<sub>2</sub>O reductase (NosZ). Bacteria with NosZ activity have been studied at circumneutral pH but the microbiology of low pH N<sub>2</sub>O reduction has remained elusive. Acidic (pH < 5) tropical forest soils were collected in the Luquillo Experimental Forest in Puerto Rico, and microcosms maintained with low (0.02 mM) and high (2 mM) N<sub>2</sub>O assessed N<sub>2</sub>O reduction at pH 4.5 and 7.3. All microcosms consumed N<sub>2</sub>O, with lag times of up to 7 months observed in microcosms with 2 mM N<sub>2</sub>O. Comparative metagenome analysis revealed that <i>Rhodocyclaceae</i> dominated in circumneutral microcosms under both N<sub>2</sub>O feeding regimes. At pH 4.5, <i>Peptococcaceae</i> dominated in high-N<sub>2</sub>O, and <i>Hyphomicrobiaceae</i> in low-N<sub>2</sub>O microcosms. Seventeen high-quality metagenome-assembled genomes (MAGs) recovered from the N<sub>2</sub>O-reducing microcosms harbored <i>nos</i> operons, with all eight MAGs derived from acidic microcosms carrying the Clade II type <i>nosZ</i> and lacking nitrite reductase genes (<i>nirS</i>/<i>K</i>). Five of the eight MAGs recovered from pH 4.5 microcosms represent novel taxa indicating an unexplored N<sub>2</sub>O-reducing diversity exists in acidic tropical soils. A survey of pH 3.5-5.7 soil metagenome datasets revealed that <i>nosZ</i> genes commonly occur, suggesting broad distribution of N<sub>2</sub>O reduction potential in acidic soils.</p>\",\"PeriodicalId\":73516,\"journal\":{\"name\":\"ISME communications\",\"volume\":\"4 1\",\"pages\":\"ycae070\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11131594/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISME communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ismeco/ycae070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismeco/ycae070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
pH selects for distinct N2O-reducing microbiomes in tropical soil microcosms.
Nitrous oxide (N2O), a greenhouse gas with ozone destruction potential, is mitigated by the microbial reduction to dinitrogen catalyzed by N2O reductase (NosZ). Bacteria with NosZ activity have been studied at circumneutral pH but the microbiology of low pH N2O reduction has remained elusive. Acidic (pH < 5) tropical forest soils were collected in the Luquillo Experimental Forest in Puerto Rico, and microcosms maintained with low (0.02 mM) and high (2 mM) N2O assessed N2O reduction at pH 4.5 and 7.3. All microcosms consumed N2O, with lag times of up to 7 months observed in microcosms with 2 mM N2O. Comparative metagenome analysis revealed that Rhodocyclaceae dominated in circumneutral microcosms under both N2O feeding regimes. At pH 4.5, Peptococcaceae dominated in high-N2O, and Hyphomicrobiaceae in low-N2O microcosms. Seventeen high-quality metagenome-assembled genomes (MAGs) recovered from the N2O-reducing microcosms harbored nos operons, with all eight MAGs derived from acidic microcosms carrying the Clade II type nosZ and lacking nitrite reductase genes (nirS/K). Five of the eight MAGs recovered from pH 4.5 microcosms represent novel taxa indicating an unexplored N2O-reducing diversity exists in acidic tropical soils. A survey of pH 3.5-5.7 soil metagenome datasets revealed that nosZ genes commonly occur, suggesting broad distribution of N2O reduction potential in acidic soils.