利用数据驱动的模态分解和深度学习进行数据修复和分辨率提升

IF 2.8 2区 工程技术 Q2 ENGINEERING, MECHANICAL Experimental Thermal and Fluid Science Pub Date : 2024-05-24 DOI:10.1016/j.expthermflusci.2024.111241
Ashton Hetherington , Daniel Serfaty , Adrián Corrochano , Julio Soria , Soledad Le Clainche
{"title":"利用数据驱动的模态分解和深度学习进行数据修复和分辨率提升","authors":"Ashton Hetherington ,&nbsp;Daniel Serfaty ,&nbsp;Adrián Corrochano ,&nbsp;Julio Soria ,&nbsp;Soledad Le Clainche","doi":"10.1016/j.expthermflusci.2024.111241","DOIUrl":null,"url":null,"abstract":"<div><p>This paper introduces a new series of methods which combine modal decomposition algorithms, such as singular value decomposition and high-order singular value decomposition, and deep learning architectures to repair, enhance, and increase the quality and precision of numerical and experimental data. A combination of two- and three-dimensional, numerical and experimental datasets are used to demonstrate the reconstruction capacity of the presented methods, showing that these methods can be used to reconstruct any type of dataset, showing outstanding results when applied to highly complex data, which is noisy. The combination of benefits of these techniques results in a series of data-driven methods which are capable of repairing and/or enhancing the resolution of a dataset by identifying the underlying physics that define the data, which is incomplete or under-resolved, filtering any existing noise. These methods and the <em>Python</em> codes are included in the first release of ModelFLOWs-app.<span><sup>1</sup></span></p></div>","PeriodicalId":12294,"journal":{"name":"Experimental Thermal and Fluid Science","volume":"157 ","pages":"Article 111241"},"PeriodicalIF":2.8000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0894177724001109/pdfft?md5=858456a15bbabb6c56a44d121e8995ed&pid=1-s2.0-S0894177724001109-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Data repairing and resolution enhancement using data-driven modal decomposition and deep learning\",\"authors\":\"Ashton Hetherington ,&nbsp;Daniel Serfaty ,&nbsp;Adrián Corrochano ,&nbsp;Julio Soria ,&nbsp;Soledad Le Clainche\",\"doi\":\"10.1016/j.expthermflusci.2024.111241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper introduces a new series of methods which combine modal decomposition algorithms, such as singular value decomposition and high-order singular value decomposition, and deep learning architectures to repair, enhance, and increase the quality and precision of numerical and experimental data. A combination of two- and three-dimensional, numerical and experimental datasets are used to demonstrate the reconstruction capacity of the presented methods, showing that these methods can be used to reconstruct any type of dataset, showing outstanding results when applied to highly complex data, which is noisy. The combination of benefits of these techniques results in a series of data-driven methods which are capable of repairing and/or enhancing the resolution of a dataset by identifying the underlying physics that define the data, which is incomplete or under-resolved, filtering any existing noise. These methods and the <em>Python</em> codes are included in the first release of ModelFLOWs-app.<span><sup>1</sup></span></p></div>\",\"PeriodicalId\":12294,\"journal\":{\"name\":\"Experimental Thermal and Fluid Science\",\"volume\":\"157 \",\"pages\":\"Article 111241\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0894177724001109/pdfft?md5=858456a15bbabb6c56a44d121e8995ed&pid=1-s2.0-S0894177724001109-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Thermal and Fluid Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0894177724001109\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Thermal and Fluid Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0894177724001109","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一系列结合模态分解算法(如奇异值分解和高阶奇异值分解)和深度学习架构的新方法,用于修复、增强和提高数值与实验数据的质量和精度。本文结合二维和三维、数值和实验数据集,展示了所介绍方法的重构能力,表明这些方法可用于重构任何类型的数据集,在应用于高复杂度、高噪声数据时效果显著。这些技术的优点结合在一起,产生了一系列数据驱动的方法,它们能够通过识别定义数据的基本物理特性,过滤任何现有噪声,修复和/或提高数据集的分辨率。这些方法和 Python 代码包含在第一版 ModelFLOWs-app.1 中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data repairing and resolution enhancement using data-driven modal decomposition and deep learning

This paper introduces a new series of methods which combine modal decomposition algorithms, such as singular value decomposition and high-order singular value decomposition, and deep learning architectures to repair, enhance, and increase the quality and precision of numerical and experimental data. A combination of two- and three-dimensional, numerical and experimental datasets are used to demonstrate the reconstruction capacity of the presented methods, showing that these methods can be used to reconstruct any type of dataset, showing outstanding results when applied to highly complex data, which is noisy. The combination of benefits of these techniques results in a series of data-driven methods which are capable of repairing and/or enhancing the resolution of a dataset by identifying the underlying physics that define the data, which is incomplete or under-resolved, filtering any existing noise. These methods and the Python codes are included in the first release of ModelFLOWs-app.1

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Experimental Thermal and Fluid Science
Experimental Thermal and Fluid Science 工程技术-工程:机械
CiteScore
6.70
自引率
3.10%
发文量
159
审稿时长
34 days
期刊介绍: Experimental Thermal and Fluid Science provides a forum for research emphasizing experimental work that enhances fundamental understanding of heat transfer, thermodynamics, and fluid mechanics. In addition to the principal areas of research, the journal covers research results in related fields, including combined heat and mass transfer, flows with phase transition, micro- and nano-scale systems, multiphase flow, combustion, radiative transfer, porous media, cryogenics, turbulence, and novel experimental techniques.
期刊最新文献
Genetically-based active flow control of a circular cylinder wake via synthetic jets Improvement of a wire-mesh sensor based on the bubble-wire collision kinematics The effect of low swirl configurations on stability limits and emission characteristics in premixed ammonia-methane-air swirling flames Experimental investigation on heated spheres entering water vertically at different temperatures A novel resonant mode drives the dynamics of a large-cavity synthetic jet actuator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1