Jianming Ye, Zhen Liu, Tingting Liu, Yanhui Wu, Yuanyi Wang
{"title":"基于分层代理模型和基于物理的角色控制的人群疏散模拟","authors":"Jianming Ye, Zhen Liu, Tingting Liu, Yanhui Wu, Yuanyi Wang","doi":"10.1002/cav.2263","DOIUrl":null,"url":null,"abstract":"<p>Crowd evacuation has gained increasing attention in recent years. The agent-based method has shown a superior capability to simulate complex behaviors during crowd evacuation simulation. For agent modeling, most existing methods only consider the decision process but ignore the detailed physical motion. In this article, we propose a hierarchical framework for crowd evacuation simulation, which combines the agent decision model with the agent motion model. In the decision model, we integrate emotional contagion and scene information to determine global path planning and local collision avoidance. In the motion model, we introduce a physics-based character control method and control agent motion using deep reinforcement learning. Based on the decision strategy, the decision model can use a signal to control the agent motion in the motion model. Compared with existing methods, our framework can simulate physical interactions between agents and the environment. The results of the crowd evacuation simulation demonstrate that our framework can simulate crowd evacuation with physical fidelity.</p>","PeriodicalId":50645,"journal":{"name":"Computer Animation and Virtual Worlds","volume":"35 3","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crowd evacuation simulation based on hierarchical agent model and physics-based character control\",\"authors\":\"Jianming Ye, Zhen Liu, Tingting Liu, Yanhui Wu, Yuanyi Wang\",\"doi\":\"10.1002/cav.2263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Crowd evacuation has gained increasing attention in recent years. The agent-based method has shown a superior capability to simulate complex behaviors during crowd evacuation simulation. For agent modeling, most existing methods only consider the decision process but ignore the detailed physical motion. In this article, we propose a hierarchical framework for crowd evacuation simulation, which combines the agent decision model with the agent motion model. In the decision model, we integrate emotional contagion and scene information to determine global path planning and local collision avoidance. In the motion model, we introduce a physics-based character control method and control agent motion using deep reinforcement learning. Based on the decision strategy, the decision model can use a signal to control the agent motion in the motion model. Compared with existing methods, our framework can simulate physical interactions between agents and the environment. The results of the crowd evacuation simulation demonstrate that our framework can simulate crowd evacuation with physical fidelity.</p>\",\"PeriodicalId\":50645,\"journal\":{\"name\":\"Computer Animation and Virtual Worlds\",\"volume\":\"35 3\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Animation and Virtual Worlds\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cav.2263\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Animation and Virtual Worlds","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cav.2263","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Crowd evacuation simulation based on hierarchical agent model and physics-based character control
Crowd evacuation has gained increasing attention in recent years. The agent-based method has shown a superior capability to simulate complex behaviors during crowd evacuation simulation. For agent modeling, most existing methods only consider the decision process but ignore the detailed physical motion. In this article, we propose a hierarchical framework for crowd evacuation simulation, which combines the agent decision model with the agent motion model. In the decision model, we integrate emotional contagion and scene information to determine global path planning and local collision avoidance. In the motion model, we introduce a physics-based character control method and control agent motion using deep reinforcement learning. Based on the decision strategy, the decision model can use a signal to control the agent motion in the motion model. Compared with existing methods, our framework can simulate physical interactions between agents and the environment. The results of the crowd evacuation simulation demonstrate that our framework can simulate crowd evacuation with physical fidelity.
期刊介绍:
With the advent of very powerful PCs and high-end graphics cards, there has been an incredible development in Virtual Worlds, real-time computer animation and simulation, games. But at the same time, new and cheaper Virtual Reality devices have appeared allowing an interaction with these real-time Virtual Worlds and even with real worlds through Augmented Reality. Three-dimensional characters, especially Virtual Humans are now of an exceptional quality, which allows to use them in the movie industry. But this is only a beginning, as with the development of Artificial Intelligence and Agent technology, these characters will become more and more autonomous and even intelligent. They will inhabit the Virtual Worlds in a Virtual Life together with animals and plants.