利用跨维贝叶斯蒙特卡洛采样成像上幔各向异性

IF 2.6 3区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Bulletin of the Seismological Society of America Pub Date : 2024-06-01 DOI:10.1785/0120230233
Gianmarco Del Piccolo, Brandon P. VanderBeek, Manuele Faccenda, Andrea Morelli, Joseph S. Byrnes
{"title":"利用跨维贝叶斯蒙特卡洛采样成像上幔各向异性","authors":"Gianmarco Del Piccolo, Brandon P. VanderBeek, Manuele Faccenda, Andrea Morelli, Joseph S. Byrnes","doi":"10.1785/0120230233","DOIUrl":null,"url":null,"abstract":"Underdetermination is a condition affecting all problems in seismic imaging. It manifests mainly in the nonuniqueness of the models inferred from the data. This condition is exacerbated if simplifying hypotheses like isotropy are discarded in favor of more realistic anisotropic models that, although supported by seismological evidence, require more free parameters. Investigating the connections between underdetermination and anisotropy requires the implementation of solvers which explore the whole family of possibilities behind nonuniqueness and allow for more informed conclusions about the interpretation of the seismic models. Because these aspects cannot be investigated using traditional iterative linearized inversion schemes with regularization constraints that collapse the infinite possible models into a unique solution, we explore the application of transdimensional Bayesian Monte Carlo sampling to address the consequences of underdetermination in anisotropic seismic imaging. We show how teleseismic waves of P and S phases can constrain upper‐mantle anisotropy and the amount of additional information these data provide in terms of uncertainty and trade‐offs among multiple fields.","PeriodicalId":9444,"journal":{"name":"Bulletin of the Seismological Society of America","volume":"15 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Imaging Upper‐Mantle Anisotropy with Transdimensional Bayesian Monte Carlo Sampling\",\"authors\":\"Gianmarco Del Piccolo, Brandon P. VanderBeek, Manuele Faccenda, Andrea Morelli, Joseph S. Byrnes\",\"doi\":\"10.1785/0120230233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Underdetermination is a condition affecting all problems in seismic imaging. It manifests mainly in the nonuniqueness of the models inferred from the data. This condition is exacerbated if simplifying hypotheses like isotropy are discarded in favor of more realistic anisotropic models that, although supported by seismological evidence, require more free parameters. Investigating the connections between underdetermination and anisotropy requires the implementation of solvers which explore the whole family of possibilities behind nonuniqueness and allow for more informed conclusions about the interpretation of the seismic models. Because these aspects cannot be investigated using traditional iterative linearized inversion schemes with regularization constraints that collapse the infinite possible models into a unique solution, we explore the application of transdimensional Bayesian Monte Carlo sampling to address the consequences of underdetermination in anisotropic seismic imaging. We show how teleseismic waves of P and S phases can constrain upper‐mantle anisotropy and the amount of additional information these data provide in terms of uncertainty and trade‐offs among multiple fields.\",\"PeriodicalId\":9444,\"journal\":{\"name\":\"Bulletin of the Seismological Society of America\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Seismological Society of America\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1785/0120230233\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Seismological Society of America","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1785/0120230233","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

欠确定性是影响地震成像所有问题的一个条件。它主要表现为从数据推断出的模型的非唯一性。如果摒弃各向同性等简化假设,转而采用更现实的各向异性模型,这种情况就会加剧。要研究欠确定性和各向异性之间的联系,就需要使用求解器来探索非唯一性背后的所有可能性,并对地震模型的解释得出更明智的结论。传统的迭代线性化反演方案带有正则化约束,可将无限可能的模型折叠成唯一的解,但无法对这些方面进行研究,因此我们探索了跨维贝叶斯蒙特卡洛采样的应用,以解决各向异性地震成像中判定不足的后果。我们展示了 P 相和 S 相远震波如何约束上幔各向异性,以及这些数据在不确定性和多场权衡方面提供的额外信息量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Imaging Upper‐Mantle Anisotropy with Transdimensional Bayesian Monte Carlo Sampling
Underdetermination is a condition affecting all problems in seismic imaging. It manifests mainly in the nonuniqueness of the models inferred from the data. This condition is exacerbated if simplifying hypotheses like isotropy are discarded in favor of more realistic anisotropic models that, although supported by seismological evidence, require more free parameters. Investigating the connections between underdetermination and anisotropy requires the implementation of solvers which explore the whole family of possibilities behind nonuniqueness and allow for more informed conclusions about the interpretation of the seismic models. Because these aspects cannot be investigated using traditional iterative linearized inversion schemes with regularization constraints that collapse the infinite possible models into a unique solution, we explore the application of transdimensional Bayesian Monte Carlo sampling to address the consequences of underdetermination in anisotropic seismic imaging. We show how teleseismic waves of P and S phases can constrain upper‐mantle anisotropy and the amount of additional information these data provide in terms of uncertainty and trade‐offs among multiple fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bulletin of the Seismological Society of America
Bulletin of the Seismological Society of America 地学-地球化学与地球物理
CiteScore
5.80
自引率
13.30%
发文量
140
审稿时长
3 months
期刊介绍: The Bulletin of the Seismological Society of America, commonly referred to as BSSA, (ISSN 0037-1106) is the premier journal of advanced research in earthquake seismology and related disciplines. It first appeared in 1911 and became a bimonthly in 1963. Each issue is composed of scientific papers on the various aspects of seismology, including investigation of specific earthquakes, theoretical and observational studies of seismic waves, inverse methods for determining the structure of the Earth or the dynamics of the earthquake source, seismometry, earthquake hazard and risk estimation, seismotectonics, and earthquake engineering. Special issues focus on important earthquakes or rapidly changing topics in seismology. BSSA is published by the Seismological Society of America.
期刊最新文献
Broadband Ground‐Motion Synthesis via Generative Adversarial Neural Operators: Development and Validation Site‐Specific Ground‐Motion Waveform Generation Using a Conditional Generative Adversarial Network and Generalized Inversion Technique Ground‐Motion Model for Small‐to‐Moderate Potentially Induced Earthquakes Using an Ensemble Machine Learning Approach for CENA Stochastic Simulation of Pulse‐Like Ground Motions Using Wavelet Packets Imaging Upper‐Mantle Anisotropy with Transdimensional Bayesian Monte Carlo Sampling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1