Xiaoling Zhang, Sihuan Chen, Shuji Gao, Weiping Yang, Yuxin Wang, Yang Wang, Li Yi
{"title":"腺苷酸合成酶蛋白(PurA)在马链球菌感染中的免疫保护潜力","authors":"Xiaoling Zhang, Sihuan Chen, Shuji Gao, Weiping Yang, Yuxin Wang, Yang Wang, Li Yi","doi":"10.2174/0115701646284439240218063821","DOIUrl":null,"url":null,"abstract":" Background: Streptococcus equi ssp. zooepidemicus(SEZ) is one important pathogen. There are still sporadic outbreaks in China, northern United States and the Netherlands. Adenylosuccinate synthetase PurA, a newly discovered protein in prior research, requires further assessment of its protective effectiveness. Methods: In this study, we focused on the expression of recombinant PurA from SEZ ATCC 35246. We evaluated the immunoreactivity of this recombinant protein using convalescent minipig sera. Additionally, we conducted experiments in mice to assess its immunogenic properties. Results: Our findings revealed that the recombinant PurA triggered a substantial antibody response in mice, resulting in an 80% protection rate against SEZ infection. Notably, mice immunized with PurA exhibited significantly reduced bacterial colonization in all organs compared to the PBS control group. Furthermore, the levels of IL-6, IL-8, IL-1β, and TNF-α in mouse serum were significantly elevated in the PurA-immunized group compared to the control group. Hyperimmune sera targeting PurA effectively eliminated SEZ in bactericidal tests. Remarkably, antibodies against PurA demonstrated a significant inhibitory effect on developing SEZ biofilm. Conclusion: Immunization with PurA elicited robust humoral and cellular immune responses in mice. These promising results suggest the potential utility of PurA in developing SEZ vaccine immunogens, providing a valuable avenue for further research into SEZ infection prevention and control.","PeriodicalId":50601,"journal":{"name":"Current Proteomics","volume":"20 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Immunoprotective Potential of Adenylosuccinate Synthetase Protein (PurA) in Streptococcus equi ssp. zooepidemicus Infections\",\"authors\":\"Xiaoling Zhang, Sihuan Chen, Shuji Gao, Weiping Yang, Yuxin Wang, Yang Wang, Li Yi\",\"doi\":\"10.2174/0115701646284439240218063821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\" Background: Streptococcus equi ssp. zooepidemicus(SEZ) is one important pathogen. There are still sporadic outbreaks in China, northern United States and the Netherlands. Adenylosuccinate synthetase PurA, a newly discovered protein in prior research, requires further assessment of its protective effectiveness. Methods: In this study, we focused on the expression of recombinant PurA from SEZ ATCC 35246. We evaluated the immunoreactivity of this recombinant protein using convalescent minipig sera. Additionally, we conducted experiments in mice to assess its immunogenic properties. Results: Our findings revealed that the recombinant PurA triggered a substantial antibody response in mice, resulting in an 80% protection rate against SEZ infection. Notably, mice immunized with PurA exhibited significantly reduced bacterial colonization in all organs compared to the PBS control group. Furthermore, the levels of IL-6, IL-8, IL-1β, and TNF-α in mouse serum were significantly elevated in the PurA-immunized group compared to the control group. Hyperimmune sera targeting PurA effectively eliminated SEZ in bactericidal tests. Remarkably, antibodies against PurA demonstrated a significant inhibitory effect on developing SEZ biofilm. Conclusion: Immunization with PurA elicited robust humoral and cellular immune responses in mice. These promising results suggest the potential utility of PurA in developing SEZ vaccine immunogens, providing a valuable avenue for further research into SEZ infection prevention and control.\",\"PeriodicalId\":50601,\"journal\":{\"name\":\"Current Proteomics\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Proteomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2174/0115701646284439240218063821\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Proteomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0115701646284439240218063821","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Immunoprotective Potential of Adenylosuccinate Synthetase Protein (PurA) in Streptococcus equi ssp. zooepidemicus Infections
Background: Streptococcus equi ssp. zooepidemicus(SEZ) is one important pathogen. There are still sporadic outbreaks in China, northern United States and the Netherlands. Adenylosuccinate synthetase PurA, a newly discovered protein in prior research, requires further assessment of its protective effectiveness. Methods: In this study, we focused on the expression of recombinant PurA from SEZ ATCC 35246. We evaluated the immunoreactivity of this recombinant protein using convalescent minipig sera. Additionally, we conducted experiments in mice to assess its immunogenic properties. Results: Our findings revealed that the recombinant PurA triggered a substantial antibody response in mice, resulting in an 80% protection rate against SEZ infection. Notably, mice immunized with PurA exhibited significantly reduced bacterial colonization in all organs compared to the PBS control group. Furthermore, the levels of IL-6, IL-8, IL-1β, and TNF-α in mouse serum were significantly elevated in the PurA-immunized group compared to the control group. Hyperimmune sera targeting PurA effectively eliminated SEZ in bactericidal tests. Remarkably, antibodies against PurA demonstrated a significant inhibitory effect on developing SEZ biofilm. Conclusion: Immunization with PurA elicited robust humoral and cellular immune responses in mice. These promising results suggest the potential utility of PurA in developing SEZ vaccine immunogens, providing a valuable avenue for further research into SEZ infection prevention and control.
Current ProteomicsBIOCHEMICAL RESEARCH METHODS-BIOCHEMISTRY & MOLECULAR BIOLOGY
CiteScore
1.60
自引率
0.00%
发文量
25
审稿时长
>0 weeks
期刊介绍:
Research in the emerging field of proteomics is growing at an extremely rapid rate. The principal aim of Current Proteomics is to publish well-timed in-depth/mini review articles in this fast-expanding area on topics relevant and significant to the development of proteomics. Current Proteomics is an essential journal for everyone involved in proteomics and related fields in both academia and industry.
Current Proteomics publishes in-depth/mini review articles in all aspects of the fast-expanding field of proteomics. All areas of proteomics are covered together with the methodology, software, databases, technological advances and applications of proteomics, including functional proteomics. Diverse technologies covered include but are not limited to:
Protein separation and characterization techniques
2-D gel electrophoresis and image analysis
Techniques for protein expression profiling including mass spectrometry-based methods and algorithms for correlative database searching
Determination of co-translational and post- translational modification of proteins
Protein/peptide microarrays
Biomolecular interaction analysis
Analysis of protein complexes
Yeast two-hybrid projects
Protein-protein interaction (protein interactome) pathways and cell signaling networks
Systems biology
Proteome informatics (bioinformatics)
Knowledge integration and management tools
High-throughput protein structural studies (using mass spectrometry, nuclear magnetic resonance and X-ray crystallography)
High-throughput computational methods for protein 3-D structure as well as function determination
Robotics, nanotechnology, and microfluidics.