腺苷酸合成酶蛋白(PurA)在马链球菌感染中的免疫保护潜力

IF 0.5 4区 生物学 Q4 BIOCHEMICAL RESEARCH METHODS Current Proteomics Pub Date : 2024-02-23 DOI:10.2174/0115701646284439240218063821
Xiaoling Zhang, Sihuan Chen, Shuji Gao, Weiping Yang, Yuxin Wang, Yang Wang, Li Yi
{"title":"腺苷酸合成酶蛋白(PurA)在马链球菌感染中的免疫保护潜力","authors":"Xiaoling Zhang, Sihuan Chen, Shuji Gao, Weiping Yang, Yuxin Wang, Yang Wang, Li Yi","doi":"10.2174/0115701646284439240218063821","DOIUrl":null,"url":null,"abstract":" Background: Streptococcus equi ssp. zooepidemicus(SEZ) is one important pathogen. There are still sporadic outbreaks in China, northern United States and the Netherlands. Adenylosuccinate synthetase PurA, a newly discovered protein in prior research, requires further assessment of its protective effectiveness. Methods: In this study, we focused on the expression of recombinant PurA from SEZ ATCC 35246. We evaluated the immunoreactivity of this recombinant protein using convalescent minipig sera. Additionally, we conducted experiments in mice to assess its immunogenic properties. Results: Our findings revealed that the recombinant PurA triggered a substantial antibody response in mice, resulting in an 80% protection rate against SEZ infection. Notably, mice immunized with PurA exhibited significantly reduced bacterial colonization in all organs compared to the PBS control group. Furthermore, the levels of IL-6, IL-8, IL-1β, and TNF-α in mouse serum were significantly elevated in the PurA-immunized group compared to the control group. Hyperimmune sera targeting PurA effectively eliminated SEZ in bactericidal tests. Remarkably, antibodies against PurA demonstrated a significant inhibitory effect on developing SEZ biofilm. Conclusion: Immunization with PurA elicited robust humoral and cellular immune responses in mice. These promising results suggest the potential utility of PurA in developing SEZ vaccine immunogens, providing a valuable avenue for further research into SEZ infection prevention and control.","PeriodicalId":50601,"journal":{"name":"Current Proteomics","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Immunoprotective Potential of Adenylosuccinate Synthetase Protein (PurA) in Streptococcus equi ssp. zooepidemicus Infections\",\"authors\":\"Xiaoling Zhang, Sihuan Chen, Shuji Gao, Weiping Yang, Yuxin Wang, Yang Wang, Li Yi\",\"doi\":\"10.2174/0115701646284439240218063821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\" Background: Streptococcus equi ssp. zooepidemicus(SEZ) is one important pathogen. There are still sporadic outbreaks in China, northern United States and the Netherlands. Adenylosuccinate synthetase PurA, a newly discovered protein in prior research, requires further assessment of its protective effectiveness. Methods: In this study, we focused on the expression of recombinant PurA from SEZ ATCC 35246. We evaluated the immunoreactivity of this recombinant protein using convalescent minipig sera. Additionally, we conducted experiments in mice to assess its immunogenic properties. Results: Our findings revealed that the recombinant PurA triggered a substantial antibody response in mice, resulting in an 80% protection rate against SEZ infection. Notably, mice immunized with PurA exhibited significantly reduced bacterial colonization in all organs compared to the PBS control group. Furthermore, the levels of IL-6, IL-8, IL-1β, and TNF-α in mouse serum were significantly elevated in the PurA-immunized group compared to the control group. Hyperimmune sera targeting PurA effectively eliminated SEZ in bactericidal tests. Remarkably, antibodies against PurA demonstrated a significant inhibitory effect on developing SEZ biofilm. Conclusion: Immunization with PurA elicited robust humoral and cellular immune responses in mice. These promising results suggest the potential utility of PurA in developing SEZ vaccine immunogens, providing a valuable avenue for further research into SEZ infection prevention and control.\",\"PeriodicalId\":50601,\"journal\":{\"name\":\"Current Proteomics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Proteomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2174/0115701646284439240218063821\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Proteomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0115701646284439240218063821","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

背景:马链球菌(Streptococcus equi ssp. zooepidemicus,SEZ)是一种重要的病原体。在中国、美国北部和荷兰仍有零星爆发。腺苷琥珀酸合成酶 PurA 是之前研究中新发现的一种蛋白质,需要进一步评估其保护效果。方法:在本研究中,我们重点研究了来自 SEZ ATCC 35246 的重组 PurA 的表达。我们使用痊愈小鼠血清评估了这种重组蛋白的免疫活性。此外,我们还在小鼠身上进行了实验,以评估其免疫原性。结果:我们的研究结果表明,重组 PurA 在小鼠体内引发了大量抗体反应,使小鼠对 SEZ 感染的保护率达到 80%。值得注意的是,与 PBS 对照组相比,用 PurA 免疫的小鼠在所有器官中的细菌定植率都明显降低。此外,与对照组相比,PurA 免疫组小鼠血清中的 IL-6、IL-8、IL-1β 和 TNF-α 水平明显升高。在杀菌试验中,针对 PurA 的超免疫血清能有效清除 SEZ。值得注意的是,PurA 抗体对 SEZ 生物膜的形成有明显的抑制作用。结论用 PurA 免疫可引起小鼠强有力的体液和细胞免疫反应。这些令人鼓舞的结果表明,PurA 在开发 SEZ 疫苗免疫原方面具有潜在的实用性,为 SEZ 感染预防和控制的进一步研究提供了宝贵的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Immunoprotective Potential of Adenylosuccinate Synthetase Protein (PurA) in Streptococcus equi ssp. zooepidemicus Infections
Background: Streptococcus equi ssp. zooepidemicus(SEZ) is one important pathogen. There are still sporadic outbreaks in China, northern United States and the Netherlands. Adenylosuccinate synthetase PurA, a newly discovered protein in prior research, requires further assessment of its protective effectiveness. Methods: In this study, we focused on the expression of recombinant PurA from SEZ ATCC 35246. We evaluated the immunoreactivity of this recombinant protein using convalescent minipig sera. Additionally, we conducted experiments in mice to assess its immunogenic properties. Results: Our findings revealed that the recombinant PurA triggered a substantial antibody response in mice, resulting in an 80% protection rate against SEZ infection. Notably, mice immunized with PurA exhibited significantly reduced bacterial colonization in all organs compared to the PBS control group. Furthermore, the levels of IL-6, IL-8, IL-1β, and TNF-α in mouse serum were significantly elevated in the PurA-immunized group compared to the control group. Hyperimmune sera targeting PurA effectively eliminated SEZ in bactericidal tests. Remarkably, antibodies against PurA demonstrated a significant inhibitory effect on developing SEZ biofilm. Conclusion: Immunization with PurA elicited robust humoral and cellular immune responses in mice. These promising results suggest the potential utility of PurA in developing SEZ vaccine immunogens, providing a valuable avenue for further research into SEZ infection prevention and control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Proteomics
Current Proteomics BIOCHEMICAL RESEARCH METHODS-BIOCHEMISTRY & MOLECULAR BIOLOGY
CiteScore
1.60
自引率
0.00%
发文量
25
审稿时长
>0 weeks
期刊介绍: Research in the emerging field of proteomics is growing at an extremely rapid rate. The principal aim of Current Proteomics is to publish well-timed in-depth/mini review articles in this fast-expanding area on topics relevant and significant to the development of proteomics. Current Proteomics is an essential journal for everyone involved in proteomics and related fields in both academia and industry. Current Proteomics publishes in-depth/mini review articles in all aspects of the fast-expanding field of proteomics. All areas of proteomics are covered together with the methodology, software, databases, technological advances and applications of proteomics, including functional proteomics. Diverse technologies covered include but are not limited to: Protein separation and characterization techniques 2-D gel electrophoresis and image analysis Techniques for protein expression profiling including mass spectrometry-based methods and algorithms for correlative database searching Determination of co-translational and post- translational modification of proteins Protein/peptide microarrays Biomolecular interaction analysis Analysis of protein complexes Yeast two-hybrid projects Protein-protein interaction (protein interactome) pathways and cell signaling networks Systems biology Proteome informatics (bioinformatics) Knowledge integration and management tools High-throughput protein structural studies (using mass spectrometry, nuclear magnetic resonance and X-ray crystallography) High-throughput computational methods for protein 3-D structure as well as function determination Robotics, nanotechnology, and microfluidics.
期刊最新文献
Exploring Phytochemical Compounds: A Computational Study for HIV-1 Reverse Transcriptase Inhibition Molecular Docking, Pharmacophore Mapping, and Virtual Screening of Novel Glucokinase Activators as Antidiabetic Agents Comprehensive Analysis of Tertiary Lymphoid Structures in Pancreatic Cancer: Molecular Characteristics and Prognostic Implications miR-124 in Neuroblastoma: Mechanistic Insights, Biomarker Potential, and Therapeutic Prospects The Relationship of Transposable Elements with Non-Coding RNAs in the Emergence of Human Proteins and Peptides
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1