{"title":"角动量的弱(非)守恒和随机动力学","authors":"Ashot Matevosyan","doi":"10.1088/1742-5468/ad3cce","DOIUrl":null,"url":null,"abstract":"Angular momentum conservation influences equilibrium statistical mechanics, leading to a generalized microcanonical density for an isolated system and a generalized Gibbs density for a weakly coupled system. We study the stochastic decay of angular momentum due to the weakly imperfect rotational symmetry of the external potential that confines the isolated many-particle system. We present a mesoscopic description of the system, deriving Langevin and Fokker–Planck equations, which are consistent with equilibrium statistical mechanics when rotational symmetry is maintained. When the symmetry is weakly violated, we formulate a coarse-grained stochastic differential equation governing the decay of total angular momentum over time. To validate our analytical predictions, we conduct numerical simulations of the microcanonical ensemble, an isolated system undergoing thermalization due to weak two-body interactions. Our coarse-grained Langevin equation accurately characterizes both the decay of the angular momentum and its fluctuations in a steady state. Furthermore, we estimate the parameters of our mesoscopic model directly from simulations, providing insights into the dissipative phenomenological coefficients, such as friction. More generally, this study contributes to a deeper understanding of the behavior of the integrals of motion when the corresponding symmetry is weakly violated.","PeriodicalId":17207,"journal":{"name":"Journal of Statistical Mechanics: Theory and Experiment","volume":"42 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weak (non)conservation and stochastic dynamics of angular momentum\",\"authors\":\"Ashot Matevosyan\",\"doi\":\"10.1088/1742-5468/ad3cce\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Angular momentum conservation influences equilibrium statistical mechanics, leading to a generalized microcanonical density for an isolated system and a generalized Gibbs density for a weakly coupled system. We study the stochastic decay of angular momentum due to the weakly imperfect rotational symmetry of the external potential that confines the isolated many-particle system. We present a mesoscopic description of the system, deriving Langevin and Fokker–Planck equations, which are consistent with equilibrium statistical mechanics when rotational symmetry is maintained. When the symmetry is weakly violated, we formulate a coarse-grained stochastic differential equation governing the decay of total angular momentum over time. To validate our analytical predictions, we conduct numerical simulations of the microcanonical ensemble, an isolated system undergoing thermalization due to weak two-body interactions. Our coarse-grained Langevin equation accurately characterizes both the decay of the angular momentum and its fluctuations in a steady state. Furthermore, we estimate the parameters of our mesoscopic model directly from simulations, providing insights into the dissipative phenomenological coefficients, such as friction. More generally, this study contributes to a deeper understanding of the behavior of the integrals of motion when the corresponding symmetry is weakly violated.\",\"PeriodicalId\":17207,\"journal\":{\"name\":\"Journal of Statistical Mechanics: Theory and Experiment\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Mechanics: Theory and Experiment\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1742-5468/ad3cce\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Mechanics: Theory and Experiment","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1742-5468/ad3cce","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Weak (non)conservation and stochastic dynamics of angular momentum
Angular momentum conservation influences equilibrium statistical mechanics, leading to a generalized microcanonical density for an isolated system and a generalized Gibbs density for a weakly coupled system. We study the stochastic decay of angular momentum due to the weakly imperfect rotational symmetry of the external potential that confines the isolated many-particle system. We present a mesoscopic description of the system, deriving Langevin and Fokker–Planck equations, which are consistent with equilibrium statistical mechanics when rotational symmetry is maintained. When the symmetry is weakly violated, we formulate a coarse-grained stochastic differential equation governing the decay of total angular momentum over time. To validate our analytical predictions, we conduct numerical simulations of the microcanonical ensemble, an isolated system undergoing thermalization due to weak two-body interactions. Our coarse-grained Langevin equation accurately characterizes both the decay of the angular momentum and its fluctuations in a steady state. Furthermore, we estimate the parameters of our mesoscopic model directly from simulations, providing insights into the dissipative phenomenological coefficients, such as friction. More generally, this study contributes to a deeper understanding of the behavior of the integrals of motion when the corresponding symmetry is weakly violated.
期刊介绍:
JSTAT is targeted to a broad community interested in different aspects of statistical physics, which are roughly defined by the fields represented in the conferences called ''Statistical Physics''. Submissions from experimentalists working on all the topics which have some ''connection to statistical physics are also strongly encouraged.
The journal covers different topics which correspond to the following keyword sections.
1. Quantum statistical physics, condensed matter, integrable systems
Scientific Directors: Eduardo Fradkin and Giuseppe Mussardo
2. Classical statistical mechanics, equilibrium and non-equilibrium
Scientific Directors: David Mukamel, Matteo Marsili and Giuseppe Mussardo
3. Disordered systems, classical and quantum
Scientific Directors: Eduardo Fradkin and Riccardo Zecchina
4. Interdisciplinary statistical mechanics
Scientific Directors: Matteo Marsili and Riccardo Zecchina
5. Biological modelling and information
Scientific Directors: Matteo Marsili, William Bialek and Riccardo Zecchina