O. P. Aleksandrova, D. V. Kuznetsova, A. A. Lyzhin, L. G. Khaspekov, N. V. Gulyaeva, A. A. Yakovlev
{"title":"Caspase-3活性和自噬强度在神经元抵御谷氨酸盐毒性过程中的作用","authors":"O. P. Aleksandrova, D. V. Kuznetsova, A. A. Lyzhin, L. G. Khaspekov, N. V. Gulyaeva, A. A. Yakovlev","doi":"10.1134/s1819712424020028","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Two periods of autophagy activation with a different significance for the development of resistance were demonstrated in the model of neuronal resistance to the toxic glutamate challenge (trophic factor deprivation). The autophagy inhibitor 3-methyladenine (3-MA) at a concentration of 1.25 mM significantly suppressed resistance development but only if applied immediately after deprivation of trophic factors. Inhibition of autophagy with 3-MA during deprivation did not affect resistance production. In addition, activation of autophagy caused a decrease in caspase-3 activity, although the mechanism of this process remains unclear. We hypothesize that development of resistance in neurons is mediated by a decrease in caspase-3 activity caused by autophagy activation.</p>","PeriodicalId":19119,"journal":{"name":"Neurochemical Journal","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Caspase-3 Activity and Autophagy Intensity in the Development of Neuronal Resistance to Glutamate Toxicity\",\"authors\":\"O. P. Aleksandrova, D. V. Kuznetsova, A. A. Lyzhin, L. G. Khaspekov, N. V. Gulyaeva, A. A. Yakovlev\",\"doi\":\"10.1134/s1819712424020028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>Two periods of autophagy activation with a different significance for the development of resistance were demonstrated in the model of neuronal resistance to the toxic glutamate challenge (trophic factor deprivation). The autophagy inhibitor 3-methyladenine (3-MA) at a concentration of 1.25 mM significantly suppressed resistance development but only if applied immediately after deprivation of trophic factors. Inhibition of autophagy with 3-MA during deprivation did not affect resistance production. In addition, activation of autophagy caused a decrease in caspase-3 activity, although the mechanism of this process remains unclear. We hypothesize that development of resistance in neurons is mediated by a decrease in caspase-3 activity caused by autophagy activation.</p>\",\"PeriodicalId\":19119,\"journal\":{\"name\":\"Neurochemical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurochemical Journal\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1134/s1819712424020028\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurochemical Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1134/s1819712424020028","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Caspase-3 Activity and Autophagy Intensity in the Development of Neuronal Resistance to Glutamate Toxicity
Abstract
Two periods of autophagy activation with a different significance for the development of resistance were demonstrated in the model of neuronal resistance to the toxic glutamate challenge (trophic factor deprivation). The autophagy inhibitor 3-methyladenine (3-MA) at a concentration of 1.25 mM significantly suppressed resistance development but only if applied immediately after deprivation of trophic factors. Inhibition of autophagy with 3-MA during deprivation did not affect resistance production. In addition, activation of autophagy caused a decrease in caspase-3 activity, although the mechanism of this process remains unclear. We hypothesize that development of resistance in neurons is mediated by a decrease in caspase-3 activity caused by autophagy activation.
期刊介绍:
Neurochemical Journal (Neirokhimiya) provides a source for the communication of the latest findings in all areas of contemporary neurochemistry and other fields of relevance (including molecular biology, biochemistry, physiology, neuroimmunology, pharmacology) in an afford to expand our understanding of the functions of the nervous system. The journal presents papers on functional neurochemistry, nervous system receptors, neurotransmitters, myelin, chromaffin granules and other components of the nervous system, as well as neurophysiological and clinical aspects, behavioral reactions, etc. Relevant topics include structure and function of the nervous system proteins, neuropeptides, nucleic acids, nucleotides, lipids, and other biologically active components.
The journal is devoted to the rapid publication of regular papers containing the results of original research, reviews highlighting major developments in neurochemistry, short communications, new experimental studies that use neurochemical methodology, descriptions of new methods of value for neurochemistry, theoretical material suggesting novel principles and approaches to neurochemical problems, presentations of new hypotheses and significant findings, discussions, chronicles of congresses, meetings, and conferences with short presentations of the most sensational and timely reports, information on the activity of the Russian and International Neurochemical Societies, as well as advertisements of reagents and equipment.