用于污染物(染料)降解的异质结光催化剂的合理设计--综述

IF 3.8 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Water, Air, & Soil Pollution Pub Date : 2024-05-29 DOI:10.1007/s11270-024-07161-x
R. Roshan Chandrapal, G. Bakiyaraj
{"title":"用于污染物(染料)降解的异质结光催化剂的合理设计--综述","authors":"R. Roshan Chandrapal, G. Bakiyaraj","doi":"10.1007/s11270-024-07161-x","DOIUrl":null,"url":null,"abstract":"<p>Development in industrial sectors such as textile, paints, paper, and cosmetics creates a complicated problem in the ecosystem and human health by utilizing binary coloring materials (methylene blue, rhodamine B, etc.). Photocatalysis is one such most widely used technology for environmental remediation, in which a sunlight-based initialing factor was utilized. However, issues related to conventional photocatalysis, like fast recombination of photo-generated electron and hole pairs, limited visible light absorption property, and poor redox abilities of the charge carriers, must be addressed to improve semiconductor photocatalysts properties and catalytic performance. Enormous efforts have been undertaken to overcome these problems. Modeling of semiconductor photocatalysts is beneficial for understanding and optimizing the functional property. Engineering of semiconductor photocatalyst was done by various techniques such as Schottky, Type-I, Type-II, and Type-III heterojunction formation, through which an efficient photocatalyst retarding the demerits (optical property, spatial charge distribution, recombination, etc.) faced by normal (non-heterojunction) semiconductor photocatalyst can be obtained. The basic principle behind heterojunction formation and its utilization was discussed. The synergistic effect between two different materials significantly impacted their photocatalytic activity improvement. In this review, we have exemplified the purpose of heterojunction formation, their types, and the band potential findings necessary for evaluating semiconductors' ability for the redox process. Furthermore, the future perspective for enhanced photocatalytic material design providing a newer pathway for upcoming research works was provided.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":808,"journal":{"name":"Water, Air, & Soil Pollution","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rational Design of Heterojunction Photocatalyst for Pollutant Degradation (Dyes)—a Review\",\"authors\":\"R. Roshan Chandrapal, G. Bakiyaraj\",\"doi\":\"10.1007/s11270-024-07161-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Development in industrial sectors such as textile, paints, paper, and cosmetics creates a complicated problem in the ecosystem and human health by utilizing binary coloring materials (methylene blue, rhodamine B, etc.). Photocatalysis is one such most widely used technology for environmental remediation, in which a sunlight-based initialing factor was utilized. However, issues related to conventional photocatalysis, like fast recombination of photo-generated electron and hole pairs, limited visible light absorption property, and poor redox abilities of the charge carriers, must be addressed to improve semiconductor photocatalysts properties and catalytic performance. Enormous efforts have been undertaken to overcome these problems. Modeling of semiconductor photocatalysts is beneficial for understanding and optimizing the functional property. Engineering of semiconductor photocatalyst was done by various techniques such as Schottky, Type-I, Type-II, and Type-III heterojunction formation, through which an efficient photocatalyst retarding the demerits (optical property, spatial charge distribution, recombination, etc.) faced by normal (non-heterojunction) semiconductor photocatalyst can be obtained. The basic principle behind heterojunction formation and its utilization was discussed. The synergistic effect between two different materials significantly impacted their photocatalytic activity improvement. In this review, we have exemplified the purpose of heterojunction formation, their types, and the band potential findings necessary for evaluating semiconductors' ability for the redox process. Furthermore, the future perspective for enhanced photocatalytic material design providing a newer pathway for upcoming research works was provided.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\\n\",\"PeriodicalId\":808,\"journal\":{\"name\":\"Water, Air, & Soil Pollution\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water, Air, & Soil Pollution\",\"FirstCategoryId\":\"6\",\"ListUrlMain\":\"https://doi.org/10.1007/s11270-024-07161-x\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water, Air, & Soil Pollution","FirstCategoryId":"6","ListUrlMain":"https://doi.org/10.1007/s11270-024-07161-x","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

纺织、油漆、造纸和化妆品等工业领域的发展利用二元着色材料(亚甲基蓝、罗丹明 B 等)给生态系统和人类健康带来了复杂的问题。光催化是一种最广泛应用的环境修复技术,其中利用了基于阳光的初始因子。然而,要改善半导体光催化剂的特性和催化性能,必须解决与传统光催化相关的问题,如光产生的电子和空穴对的快速重组、有限的可见光吸收特性以及电荷载体的氧化还原能力差等。为了克服这些问题,人们付出了巨大的努力。半导体光催化剂建模有利于了解和优化其功能特性。半导体光催化剂工程是通过各种技术完成的,如肖特基、I 型、II 型和 III 型异质结形成,通过这些技术可以获得高效的光催化剂,从而避免普通(非异质结)半导体光催化剂所面临的缺点(光学特性、空间电荷分布、重组等)。讨论了异质结形成的基本原理及其利用。两种不同材料之间的协同效应极大地影响了它们的光催化活性的提高。在这篇综述中,我们举例说明了异质结形成的目的、类型以及评估半导体氧化还原过程能力所需的带电位发现。此外,我们还展望了增强型光催化材料设计的未来前景,为即将开展的研究工作提供了一条更新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rational Design of Heterojunction Photocatalyst for Pollutant Degradation (Dyes)—a Review

Development in industrial sectors such as textile, paints, paper, and cosmetics creates a complicated problem in the ecosystem and human health by utilizing binary coloring materials (methylene blue, rhodamine B, etc.). Photocatalysis is one such most widely used technology for environmental remediation, in which a sunlight-based initialing factor was utilized. However, issues related to conventional photocatalysis, like fast recombination of photo-generated electron and hole pairs, limited visible light absorption property, and poor redox abilities of the charge carriers, must be addressed to improve semiconductor photocatalysts properties and catalytic performance. Enormous efforts have been undertaken to overcome these problems. Modeling of semiconductor photocatalysts is beneficial for understanding and optimizing the functional property. Engineering of semiconductor photocatalyst was done by various techniques such as Schottky, Type-I, Type-II, and Type-III heterojunction formation, through which an efficient photocatalyst retarding the demerits (optical property, spatial charge distribution, recombination, etc.) faced by normal (non-heterojunction) semiconductor photocatalyst can be obtained. The basic principle behind heterojunction formation and its utilization was discussed. The synergistic effect between two different materials significantly impacted their photocatalytic activity improvement. In this review, we have exemplified the purpose of heterojunction formation, their types, and the band potential findings necessary for evaluating semiconductors' ability for the redox process. Furthermore, the future perspective for enhanced photocatalytic material design providing a newer pathway for upcoming research works was provided.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Water, Air, & Soil Pollution
Water, Air, & Soil Pollution 环境科学-环境科学
CiteScore
4.50
自引率
6.90%
发文量
448
审稿时长
2.6 months
期刊介绍: Water, Air, & Soil Pollution is an international, interdisciplinary journal on all aspects of pollution and solutions to pollution in the biosphere. This includes chemical, physical and biological processes affecting flora, fauna, water, air and soil in relation to environmental pollution. Because of its scope, the subject areas are diverse and include all aspects of pollution sources, transport, deposition, accumulation, acid precipitation, atmospheric pollution, metals, aquatic pollution including marine pollution and ground water, waste water, pesticides, soil pollution, sewage, sediment pollution, forestry pollution, effects of pollutants on humans, vegetation, fish, aquatic species, micro-organisms, and animals, environmental and molecular toxicology applied to pollution research, biosensors, global and climate change, ecological implications of pollution and pollution models. Water, Air, & Soil Pollution also publishes manuscripts on novel methods used in the study of environmental pollutants, environmental toxicology, environmental biology, novel environmental engineering related to pollution, biodiversity as influenced by pollution, novel environmental biotechnology as applied to pollution (e.g. bioremediation), environmental modelling and biorestoration of polluted environments. Articles should not be submitted that are of local interest only and do not advance international knowledge in environmental pollution and solutions to pollution. Articles that simply replicate known knowledge or techniques while researching a local pollution problem will normally be rejected without review. Submitted articles must have up-to-date references, employ the correct experimental replication and statistical analysis, where needed and contain a significant contribution to new knowledge. The publishing and editorial team sincerely appreciate your cooperation. Water, Air, & Soil Pollution publishes research papers; review articles; mini-reviews; and book reviews.
期刊最新文献
A New Method for Groundwater Pollution Investigation Toxicology Risk Assessment of Uranium in Drinking water of Ganderbal and Budgam Districts of Jammu and Kashmir, India Remediation of Neonicotinoid Polluted Environment by Silica Hybrid Nanosorbents Optimization of Polysulfone Based Membranes Using Charged Graphite Nano Platelets for Separation of Manganese and Chromium (VI) From Water Ensuring Sustainable Agricultural Practices: Treated Wastewater Quality and Its Impact on Groundwater for Irrigation in Oman
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1