根据心脏应变对左心室舒张末压力的内测估算

Emilio A. Mendiola, Raza Rana Mehdi, Dipan J. Shah, Reza Avazmohammadi
{"title":"根据心脏应变对左心室舒张末压力的内测估算","authors":"Emilio A. Mendiola, Raza Rana Mehdi, Dipan J. Shah, Reza Avazmohammadi","doi":"arxiv-2405.18343","DOIUrl":null,"url":null,"abstract":"Left ventricular diastolic dysfunction (LVDD) is a group of diseases that\nadversely affect the passive phase of the cardiac cycle and can lead to heart\nfailure. While left ventricular end-diastolic pressure (LVEDP) is a valuable\nprognostic measure in LVDD patients, traditional invasive methods of measuring\nLVEDP present risks and limitations, highlighting the need for alternative\napproaches. This paper investigates the possibility of measuring LVEDP\nnon-invasively using inverse in-silico modeling. We propose the adoption of\npatient-specific cardiac modeling and simulation to estimate LVEDP and\nmyocardial stiffness from cardiac strains. We have developed a high-fidelity\npatient-specific computational model of the left ventricle. Through an inverse\nmodeling approach, myocardial stiffness and LVEDP were accurately estimated\nfrom cardiac strains that can be acquired from in vivo imaging, indicating the\nfeasibility of computational modeling to augment current approaches in the\nmeasurement of ventricular pressure. Integration of such computational\nplatforms into clinical practice holds promise for early detection and\ncomprehensive assessment of LVDD with reduced risk for patients.","PeriodicalId":501572,"journal":{"name":"arXiv - QuanBio - Tissues and Organs","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On in-silico estimation of left ventricular end-diastolic pressure from cardiac strains\",\"authors\":\"Emilio A. Mendiola, Raza Rana Mehdi, Dipan J. Shah, Reza Avazmohammadi\",\"doi\":\"arxiv-2405.18343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Left ventricular diastolic dysfunction (LVDD) is a group of diseases that\\nadversely affect the passive phase of the cardiac cycle and can lead to heart\\nfailure. While left ventricular end-diastolic pressure (LVEDP) is a valuable\\nprognostic measure in LVDD patients, traditional invasive methods of measuring\\nLVEDP present risks and limitations, highlighting the need for alternative\\napproaches. This paper investigates the possibility of measuring LVEDP\\nnon-invasively using inverse in-silico modeling. We propose the adoption of\\npatient-specific cardiac modeling and simulation to estimate LVEDP and\\nmyocardial stiffness from cardiac strains. We have developed a high-fidelity\\npatient-specific computational model of the left ventricle. Through an inverse\\nmodeling approach, myocardial stiffness and LVEDP were accurately estimated\\nfrom cardiac strains that can be acquired from in vivo imaging, indicating the\\nfeasibility of computational modeling to augment current approaches in the\\nmeasurement of ventricular pressure. Integration of such computational\\nplatforms into clinical practice holds promise for early detection and\\ncomprehensive assessment of LVDD with reduced risk for patients.\",\"PeriodicalId\":501572,\"journal\":{\"name\":\"arXiv - QuanBio - Tissues and Organs\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Tissues and Organs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.18343\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Tissues and Organs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.18343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

左心室舒张功能障碍(LVDD)是一组对心动周期的被动期产生不利影响并可能导致心脏衰竭的疾病。虽然左心室舒张末期压(LVEDP)是测量左心室舒张功能障碍患者预后的重要指标,但测量 LVEDP 的传统侵入性方法存在风险和局限性,因此需要采用替代方法。本文研究了利用反向硅内建模无创测量 LVEDP 的可能性。我们建议采用特定患者的心脏建模和模拟来估计 LVEDP 和心脏应变的心肌僵硬度。我们开发了一个高保真的患者特异性左心室计算模型。通过逆向建模方法,可以根据活体成像获得的心脏应变准确估算出心肌僵硬度和 LVEDP,这表明计算建模增强当前心室压力测量主题方法的可行性。将这种计算平台与临床实践相结合,有望早期检测和全面评估 LVDD,降低患者的风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On in-silico estimation of left ventricular end-diastolic pressure from cardiac strains
Left ventricular diastolic dysfunction (LVDD) is a group of diseases that adversely affect the passive phase of the cardiac cycle and can lead to heart failure. While left ventricular end-diastolic pressure (LVEDP) is a valuable prognostic measure in LVDD patients, traditional invasive methods of measuring LVEDP present risks and limitations, highlighting the need for alternative approaches. This paper investigates the possibility of measuring LVEDP non-invasively using inverse in-silico modeling. We propose the adoption of patient-specific cardiac modeling and simulation to estimate LVEDP and myocardial stiffness from cardiac strains. We have developed a high-fidelity patient-specific computational model of the left ventricle. Through an inverse modeling approach, myocardial stiffness and LVEDP were accurately estimated from cardiac strains that can be acquired from in vivo imaging, indicating the feasibility of computational modeling to augment current approaches in the measurement of ventricular pressure. Integration of such computational platforms into clinical practice holds promise for early detection and comprehensive assessment of LVDD with reduced risk for patients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Clinical Validation of a Real-Time Machine Learning-based System for the Detection of Acute Myeloid Leukemia by Flow Cytometry Dynamic landscapes and statistical limits on growth during cell fate specification (Un)buckling mechanics of epithelial monolayers under compression On the design and stability of cancer adaptive therapy cycles: deterministic and stochastic models Celcomen: spatial causal disentanglement for single-cell and tissue perturbation modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1