拉索卡地层碎屑蛇绿岩沉积砂岩中变质的超基性和镁基性岩屑和碎屑矿物:切尔斯基山脉蛇绿岩的形成背景

IF 1 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Petrology Pub Date : 2024-05-27 DOI:10.1134/S0869591124700048
G. V. Ledneva, B. A. Bazylev, S. N. Sychev, A. V. Rogov
{"title":"拉索卡地层碎屑蛇绿岩沉积砂岩中变质的超基性和镁基性岩屑和碎屑矿物:切尔斯基山脉蛇绿岩的形成背景","authors":"G. V. Ledneva,&nbsp;B. A. Bazylev,&nbsp;S. N. Sychev,&nbsp;A. V. Rogov","doi":"10.1134/S0869591124700048","DOIUrl":null,"url":null,"abstract":"<p>Ophiolite-derived clastic rocks of the Rassokha terrane in the Chersky Range of the Verkhoyansk−Kolyma folded area were studied to obtain representative characteristics of the eroded source metamorphosed ultramafic and mafic rocks, to gain an insight into the possible geodynamic setting in which the protoliths of these rocks were formed, and to identify the possible source of the eroded material. The composition of lithoclasts and detrital minerals of the serpentinite and listwanite sandstones suggests that their source was composed of serpentinite, chloritite, listwanite, and dolomite rocks and that this source was proximal. Prior to the source erosion, the ultramafic and mafic rocks were metamorphosed and recrystallized, listwanite was formed, and the ultramafic rocks were tectonically disintegrated and combined with units of carbonate rocks (dolomite). Ultramafic rocks from lithoclasts experienced allochemical metamorphic retrogression during at least the latest stage of their serpentinization in a nonoceanic setting, where also the listwanite was formed. The Late Neoproterozoic ophiolites of the collisional belt of the Chersky Range were the most probable source for the protoliths of the clastic material. The protoliths of the ophiolite rock were probably formed in a backarc setting. Considered together with the published ages, our data indicate that relics of suprasubduction oceanic lithosphere of the Neoproterozoic basin occurred in the Chersky Range.</p>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"32 3","pages":"422 - 448"},"PeriodicalIF":1.0000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metamorphosed Ultramafic and Mafic Lithoclasts and Detrital Minerals from Sandstones of Clastic Ophiolitic Deposits of the Rassokha Terrane: A Setting of Formation of the Chersky Range Ophiolites\",\"authors\":\"G. V. Ledneva,&nbsp;B. A. Bazylev,&nbsp;S. N. Sychev,&nbsp;A. V. Rogov\",\"doi\":\"10.1134/S0869591124700048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ophiolite-derived clastic rocks of the Rassokha terrane in the Chersky Range of the Verkhoyansk−Kolyma folded area were studied to obtain representative characteristics of the eroded source metamorphosed ultramafic and mafic rocks, to gain an insight into the possible geodynamic setting in which the protoliths of these rocks were formed, and to identify the possible source of the eroded material. The composition of lithoclasts and detrital minerals of the serpentinite and listwanite sandstones suggests that their source was composed of serpentinite, chloritite, listwanite, and dolomite rocks and that this source was proximal. Prior to the source erosion, the ultramafic and mafic rocks were metamorphosed and recrystallized, listwanite was formed, and the ultramafic rocks were tectonically disintegrated and combined with units of carbonate rocks (dolomite). Ultramafic rocks from lithoclasts experienced allochemical metamorphic retrogression during at least the latest stage of their serpentinization in a nonoceanic setting, where also the listwanite was formed. The Late Neoproterozoic ophiolites of the collisional belt of the Chersky Range were the most probable source for the protoliths of the clastic material. The protoliths of the ophiolite rock were probably formed in a backarc setting. Considered together with the published ages, our data indicate that relics of suprasubduction oceanic lithosphere of the Neoproterozoic basin occurred in the Chersky Range.</p>\",\"PeriodicalId\":20026,\"journal\":{\"name\":\"Petrology\",\"volume\":\"32 3\",\"pages\":\"422 - 448\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petrology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0869591124700048\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petrology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S0869591124700048","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 对上霍扬斯克-科雷马褶皱区切尔斯基山脉拉索卡岩系的蛇绿岩衍生碎屑岩进行了研究,以获得侵蚀源变质超基性岩和黑云母岩的代表性特征,深入了解这些岩石原岩形成的可能地球动力环境,并确定侵蚀物质的可能来源。蛇纹石砂岩和鳞片砂岩的岩石碎屑和碎屑矿物成分表明,它们的来源是由蛇纹石、绿泥石、鳞片砂岩和白云石岩石组成的,而且这个来源很近。在岩源侵蚀之前,超基性岩和黑云母岩经过变质和重结晶,形成了鳞片皖石,超基性岩经过构造解体,与碳酸盐岩(白云岩)单元结合在一起。来自碎屑岩的超基性岩至少在其蛇绿岩化的最近阶段经历了分配化学变质逆退,在非大洋环境中也形成了鳞片岩。切尔斯基山脉碰撞带的新近纪晚期蛇绿岩是碎屑物质原岩的最可能来源。蛇绿岩的原岩很可能是在弧后环境中形成的。结合已公布的年龄,我们的数据表明新近纪盆地的超俯冲洋岩石圈遗迹出现在切尔斯基山脉。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Metamorphosed Ultramafic and Mafic Lithoclasts and Detrital Minerals from Sandstones of Clastic Ophiolitic Deposits of the Rassokha Terrane: A Setting of Formation of the Chersky Range Ophiolites

Ophiolite-derived clastic rocks of the Rassokha terrane in the Chersky Range of the Verkhoyansk−Kolyma folded area were studied to obtain representative characteristics of the eroded source metamorphosed ultramafic and mafic rocks, to gain an insight into the possible geodynamic setting in which the protoliths of these rocks were formed, and to identify the possible source of the eroded material. The composition of lithoclasts and detrital minerals of the serpentinite and listwanite sandstones suggests that their source was composed of serpentinite, chloritite, listwanite, and dolomite rocks and that this source was proximal. Prior to the source erosion, the ultramafic and mafic rocks were metamorphosed and recrystallized, listwanite was formed, and the ultramafic rocks were tectonically disintegrated and combined with units of carbonate rocks (dolomite). Ultramafic rocks from lithoclasts experienced allochemical metamorphic retrogression during at least the latest stage of their serpentinization in a nonoceanic setting, where also the listwanite was formed. The Late Neoproterozoic ophiolites of the collisional belt of the Chersky Range were the most probable source for the protoliths of the clastic material. The protoliths of the ophiolite rock were probably formed in a backarc setting. Considered together with the published ages, our data indicate that relics of suprasubduction oceanic lithosphere of the Neoproterozoic basin occurred in the Chersky Range.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Petrology
Petrology 地学-地球科学综合
CiteScore
2.40
自引率
20.00%
发文量
27
审稿时长
>12 weeks
期刊介绍: Petrology is a journal of magmatic, metamorphic, and experimental petrology, mineralogy, and geochemistry. The journal offers comprehensive information on all multidisciplinary aspects of theoretical, experimental, and applied petrology. By giving special consideration to studies on the petrography of different regions of the former Soviet Union, Petrology provides readers with a unique opportunity to refine their understanding of the geology of the vast territory of the Eurasian continent. The journal welcomes manuscripts from all countries in the English or Russian language.
期刊最新文献
Oleg A. Bogatikov: December 15, 1934–March 1, 2022 Granitoid Intrusions at the Periphery of the Kursk Block as Part of a Paleoproterozoic Silicic Large Igneous Province in Eastern Sarmatia Petrogenesis of Granitoids from Silicic Large Igneous Provinces (Central and Northeast Asia) Early Mesozoic Bimodal Volcanic Sequences of Central Mongolia: Implications for the Evolution of the Khentey Segment of the Mongol–Okhotsk Belt Potassium Alkaline Volcanism of Alaid Volcano, Kuril Islands: the Role of Subduction Melange in Magma Genesis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1