{"title":"1979 年至 2021 年墨西哥湾热带风暴极端降雨量的时空分布情况","authors":"Jae Yeol Song, Eun-Sung Chung","doi":"10.1007/s00477-024-02742-y","DOIUrl":null,"url":null,"abstract":"<p>Atlantic tropical cyclones often associate with heavy rainfall, which causes inland- and coastal-flooding in the United States, and the storm-induced rainfall is closely related to its storm scale, movement, and location. For a better performance in flood or risk analysis in a region, understanding the characteristics and distribution of tropical storm (TS) induced extreme rainfall is essential. This study proposes dimensionless rainfall-duration curves for designated four-quartile storms that represents the temporal distribution of TS induced extreme rainfall in the Gulf of Mexico from 1979 to 2021. Our study employs spatiotemporal analysis to compute rainfall while TSs are located overseas and inland from satellite based climate forcing data and hurricane track records, annual maximum approach to define TS induced extreme rainfall events, and designated track types to categorize events based on their trajectories. As a result, extreme rainfall relating to TSs in the Gulf of Mexico are found to be considerably higher in inland than overseas. For inland, majority of the TSs was found to be the 1st- and 2nd-quartile storms. However, the 3rd-quartile storms, which case are rare, were found to have the overall largest amount of rainfall per duration compared to the other quartile storms. As for overseas, more than half of the TSs were found to be the 4th-quartile storm while the 2nd-quartile storm has higher overall rainfall per duration. Spatial analysis shows that Texas, Louisiana, Mississippi, Florida, and South Carolina are determined as high-threatened areas by TS induced extreme rainfall.</p>","PeriodicalId":21987,"journal":{"name":"Stochastic Environmental Research and Risk Assessment","volume":"35 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temporal and spatial distribution of extreme rainfall from tropical storms in the Gulf of Mexico from 1979 to 2021\",\"authors\":\"Jae Yeol Song, Eun-Sung Chung\",\"doi\":\"10.1007/s00477-024-02742-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Atlantic tropical cyclones often associate with heavy rainfall, which causes inland- and coastal-flooding in the United States, and the storm-induced rainfall is closely related to its storm scale, movement, and location. For a better performance in flood or risk analysis in a region, understanding the characteristics and distribution of tropical storm (TS) induced extreme rainfall is essential. This study proposes dimensionless rainfall-duration curves for designated four-quartile storms that represents the temporal distribution of TS induced extreme rainfall in the Gulf of Mexico from 1979 to 2021. Our study employs spatiotemporal analysis to compute rainfall while TSs are located overseas and inland from satellite based climate forcing data and hurricane track records, annual maximum approach to define TS induced extreme rainfall events, and designated track types to categorize events based on their trajectories. As a result, extreme rainfall relating to TSs in the Gulf of Mexico are found to be considerably higher in inland than overseas. For inland, majority of the TSs was found to be the 1st- and 2nd-quartile storms. However, the 3rd-quartile storms, which case are rare, were found to have the overall largest amount of rainfall per duration compared to the other quartile storms. As for overseas, more than half of the TSs were found to be the 4th-quartile storm while the 2nd-quartile storm has higher overall rainfall per duration. Spatial analysis shows that Texas, Louisiana, Mississippi, Florida, and South Carolina are determined as high-threatened areas by TS induced extreme rainfall.</p>\",\"PeriodicalId\":21987,\"journal\":{\"name\":\"Stochastic Environmental Research and Risk Assessment\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Environmental Research and Risk Assessment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s00477-024-02742-y\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Environmental Research and Risk Assessment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s00477-024-02742-y","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Temporal and spatial distribution of extreme rainfall from tropical storms in the Gulf of Mexico from 1979 to 2021
Atlantic tropical cyclones often associate with heavy rainfall, which causes inland- and coastal-flooding in the United States, and the storm-induced rainfall is closely related to its storm scale, movement, and location. For a better performance in flood or risk analysis in a region, understanding the characteristics and distribution of tropical storm (TS) induced extreme rainfall is essential. This study proposes dimensionless rainfall-duration curves for designated four-quartile storms that represents the temporal distribution of TS induced extreme rainfall in the Gulf of Mexico from 1979 to 2021. Our study employs spatiotemporal analysis to compute rainfall while TSs are located overseas and inland from satellite based climate forcing data and hurricane track records, annual maximum approach to define TS induced extreme rainfall events, and designated track types to categorize events based on their trajectories. As a result, extreme rainfall relating to TSs in the Gulf of Mexico are found to be considerably higher in inland than overseas. For inland, majority of the TSs was found to be the 1st- and 2nd-quartile storms. However, the 3rd-quartile storms, which case are rare, were found to have the overall largest amount of rainfall per duration compared to the other quartile storms. As for overseas, more than half of the TSs were found to be the 4th-quartile storm while the 2nd-quartile storm has higher overall rainfall per duration. Spatial analysis shows that Texas, Louisiana, Mississippi, Florida, and South Carolina are determined as high-threatened areas by TS induced extreme rainfall.
期刊介绍:
Stochastic Environmental Research and Risk Assessment (SERRA) will publish research papers, reviews and technical notes on stochastic and probabilistic approaches to environmental sciences and engineering, including interactions of earth and atmospheric environments with people and ecosystems. The basic idea is to bring together research papers on stochastic modelling in various fields of environmental sciences and to provide an interdisciplinary forum for the exchange of ideas, for communicating on issues that cut across disciplinary barriers, and for the dissemination of stochastic techniques used in different fields to the community of interested researchers. Original contributions will be considered dealing with modelling (theoretical and computational), measurements and instrumentation in one or more of the following topical areas:
- Spatiotemporal analysis and mapping of natural processes.
- Enviroinformatics.
- Environmental risk assessment, reliability analysis and decision making.
- Surface and subsurface hydrology and hydraulics.
- Multiphase porous media domains and contaminant transport modelling.
- Hazardous waste site characterization.
- Stochastic turbulence and random hydrodynamic fields.
- Chaotic and fractal systems.
- Random waves and seafloor morphology.
- Stochastic atmospheric and climate processes.
- Air pollution and quality assessment research.
- Modern geostatistics.
- Mechanisms of pollutant formation, emission, exposure and absorption.
- Physical, chemical and biological analysis of human exposure from single and multiple media and routes; control and protection.
- Bioinformatics.
- Probabilistic methods in ecology and population biology.
- Epidemiological investigations.
- Models using stochastic differential equations stochastic or partial differential equations.
- Hazardous waste site characterization.