{"title":"通过引导扩散在视觉感知推荐系统上推广对抗性项目","authors":"Lijian Chen, Wei Yuan, Tong Chen, Guanhua Ye, Nguyen Quoc Viet Hung, Hongzhi Yin","doi":"10.1145/3666088","DOIUrl":null,"url":null,"abstract":"<p>Visually-aware recommender systems have found widespread applications in domains where visual elements significantly contribute to the inference of users’ potential preferences. While the incorporation of visual information holds the promise of enhancing recommendation accuracy and alleviating the cold-start problem, it is essential to point out that the inclusion of item images may introduce substantial security challenges. Some existing works have shown that the item provider can manipulate item exposure rates to its advantage by constructing adversarial images. However, these works cannot reveal the real vulnerability of visually-aware recommender systems because (1) the generated adversarial images are markedly distorted, rendering them easily detected by human observers; (2) the effectiveness of these attacks is inconsistent and even ineffective in some scenarios or datasets. To shed light on the real vulnerabilities of visually-aware recommender systems when confronted with adversarial images, this paper introduces a novel attack method, IPDGI (Item Promotion by Diffusion Generated Image). Specifically, IPDGI employs a guided diffusion model to generate adversarial samples designed to promote the exposure rates of target items (e.g., long-tail items). Taking advantage of accurately modeling benign images’ distribution by diffusion models, the generated adversarial images have high fidelity with original images, ensuring the stealth of our IPDGI. To demonstrate the effectiveness of our proposed methods, we conduct extensive experiments on two commonly used e-commerce recommendation datasets (Amazon Beauty and Amazon Baby) with several typical visually-aware recommender systems. The experimental results show that our attack method significantly improves both the performance of promoting the long-tailed (i.e., unpopular) items and the quality of generated adversarial images.</p>","PeriodicalId":50936,"journal":{"name":"ACM Transactions on Information Systems","volume":"19 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adversarial Item Promotion on Visually-Aware Recommender Systems by Guided Diffusion\",\"authors\":\"Lijian Chen, Wei Yuan, Tong Chen, Guanhua Ye, Nguyen Quoc Viet Hung, Hongzhi Yin\",\"doi\":\"10.1145/3666088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Visually-aware recommender systems have found widespread applications in domains where visual elements significantly contribute to the inference of users’ potential preferences. While the incorporation of visual information holds the promise of enhancing recommendation accuracy and alleviating the cold-start problem, it is essential to point out that the inclusion of item images may introduce substantial security challenges. Some existing works have shown that the item provider can manipulate item exposure rates to its advantage by constructing adversarial images. However, these works cannot reveal the real vulnerability of visually-aware recommender systems because (1) the generated adversarial images are markedly distorted, rendering them easily detected by human observers; (2) the effectiveness of these attacks is inconsistent and even ineffective in some scenarios or datasets. To shed light on the real vulnerabilities of visually-aware recommender systems when confronted with adversarial images, this paper introduces a novel attack method, IPDGI (Item Promotion by Diffusion Generated Image). Specifically, IPDGI employs a guided diffusion model to generate adversarial samples designed to promote the exposure rates of target items (e.g., long-tail items). Taking advantage of accurately modeling benign images’ distribution by diffusion models, the generated adversarial images have high fidelity with original images, ensuring the stealth of our IPDGI. To demonstrate the effectiveness of our proposed methods, we conduct extensive experiments on two commonly used e-commerce recommendation datasets (Amazon Beauty and Amazon Baby) with several typical visually-aware recommender systems. The experimental results show that our attack method significantly improves both the performance of promoting the long-tailed (i.e., unpopular) items and the quality of generated adversarial images.</p>\",\"PeriodicalId\":50936,\"journal\":{\"name\":\"ACM Transactions on Information Systems\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3666088\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3666088","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Adversarial Item Promotion on Visually-Aware Recommender Systems by Guided Diffusion
Visually-aware recommender systems have found widespread applications in domains where visual elements significantly contribute to the inference of users’ potential preferences. While the incorporation of visual information holds the promise of enhancing recommendation accuracy and alleviating the cold-start problem, it is essential to point out that the inclusion of item images may introduce substantial security challenges. Some existing works have shown that the item provider can manipulate item exposure rates to its advantage by constructing adversarial images. However, these works cannot reveal the real vulnerability of visually-aware recommender systems because (1) the generated adversarial images are markedly distorted, rendering them easily detected by human observers; (2) the effectiveness of these attacks is inconsistent and even ineffective in some scenarios or datasets. To shed light on the real vulnerabilities of visually-aware recommender systems when confronted with adversarial images, this paper introduces a novel attack method, IPDGI (Item Promotion by Diffusion Generated Image). Specifically, IPDGI employs a guided diffusion model to generate adversarial samples designed to promote the exposure rates of target items (e.g., long-tail items). Taking advantage of accurately modeling benign images’ distribution by diffusion models, the generated adversarial images have high fidelity with original images, ensuring the stealth of our IPDGI. To demonstrate the effectiveness of our proposed methods, we conduct extensive experiments on two commonly used e-commerce recommendation datasets (Amazon Beauty and Amazon Baby) with several typical visually-aware recommender systems. The experimental results show that our attack method significantly improves both the performance of promoting the long-tailed (i.e., unpopular) items and the quality of generated adversarial images.
期刊介绍:
The ACM Transactions on Information Systems (TOIS) publishes papers on information retrieval (such as search engines, recommender systems) that contain:
new principled information retrieval models or algorithms with sound empirical validation;
observational, experimental and/or theoretical studies yielding new insights into information retrieval or information seeking;
accounts of applications of existing information retrieval techniques that shed light on the strengths and weaknesses of the techniques;
formalization of new information retrieval or information seeking tasks and of methods for evaluating the performance on those tasks;
development of content (text, image, speech, video, etc) analysis methods to support information retrieval and information seeking;
development of computational models of user information preferences and interaction behaviors;
creation and analysis of evaluation methodologies for information retrieval and information seeking; or
surveys of existing work that propose a significant synthesis.
The information retrieval scope of ACM Transactions on Information Systems (TOIS) appeals to industry practitioners for its wealth of creative ideas, and to academic researchers for its descriptions of their colleagues'' work.