频率变化的半参数波动率模型

Pub Date : 2024-05-23 DOI:10.1080/03610918.2024.2356236
Jetrei Benedick R. Benito, Joseph Ryan G. Lansangan, Erniel B. Barrios
{"title":"频率变化的半参数波动率模型","authors":"Jetrei Benedick R. Benito, Joseph Ryan G. Lansangan, Erniel B. Barrios","doi":"10.1080/03610918.2024.2356236","DOIUrl":null,"url":null,"abstract":"Time series data from various sources usually results to variables measured at varying frequencies as this is often dependent on the source. Modeling from these data can be facilitated by aggregati...","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semiparametric volatility model with varying frequencies\",\"authors\":\"Jetrei Benedick R. Benito, Joseph Ryan G. Lansangan, Erniel B. Barrios\",\"doi\":\"10.1080/03610918.2024.2356236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Time series data from various sources usually results to variables measured at varying frequencies as this is often dependent on the source. Modeling from these data can be facilitated by aggregati...\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/03610918.2024.2356236\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/03610918.2024.2356236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

来自不同来源的时间序列数据通常会导致以不同频率测量的变量,因为这往往取决于数据来源。利用这些数据建模,可以通过聚合数据来实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
Semiparametric volatility model with varying frequencies
Time series data from various sources usually results to variables measured at varying frequencies as this is often dependent on the source. Modeling from these data can be facilitated by aggregati...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1