{"title":"卷积网络在断裂地质包裹体标量参数定位和预测中的应用","authors":"Vasily Golubev, Mikhail Anisimov","doi":"10.1142/s1758825124500649","DOIUrl":null,"url":null,"abstract":"<p>Seismic inversion is an important part of the modern geological exploration process. Novel applications of deep learning are capable of handling heterogeneous media, but require too much data for training. In this paper, we focus on the prediction of fracture inclusion location and its parameters in rock media and approach the problem in the multi-task manner. For this, several multi-task convolutional neural network (CNN) architectures are proposed and compared. The direct seismic problem is considered in the heterogeneous fractured geological model based on the well-known Marmousi2 model in a two-dimensional case. The model of the deformable solid medium containing slip planes with nonlinear slip conditions on them and explicit–implicit numerical method is applied to obtain the synthetic seismic dataset for CNN training and validation.</p>","PeriodicalId":49186,"journal":{"name":"International Journal of Applied Mechanics","volume":"5 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Convolutional Networks for Localization and Prediction of Scalar Parameters of Fractured Geological Inclusion\",\"authors\":\"Vasily Golubev, Mikhail Anisimov\",\"doi\":\"10.1142/s1758825124500649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Seismic inversion is an important part of the modern geological exploration process. Novel applications of deep learning are capable of handling heterogeneous media, but require too much data for training. In this paper, we focus on the prediction of fracture inclusion location and its parameters in rock media and approach the problem in the multi-task manner. For this, several multi-task convolutional neural network (CNN) architectures are proposed and compared. The direct seismic problem is considered in the heterogeneous fractured geological model based on the well-known Marmousi2 model in a two-dimensional case. The model of the deformable solid medium containing slip planes with nonlinear slip conditions on them and explicit–implicit numerical method is applied to obtain the synthetic seismic dataset for CNN training and validation.</p>\",\"PeriodicalId\":49186,\"journal\":{\"name\":\"International Journal of Applied Mechanics\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1142/s1758825124500649\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1142/s1758825124500649","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Application of Convolutional Networks for Localization and Prediction of Scalar Parameters of Fractured Geological Inclusion
Seismic inversion is an important part of the modern geological exploration process. Novel applications of deep learning are capable of handling heterogeneous media, but require too much data for training. In this paper, we focus on the prediction of fracture inclusion location and its parameters in rock media and approach the problem in the multi-task manner. For this, several multi-task convolutional neural network (CNN) architectures are proposed and compared. The direct seismic problem is considered in the heterogeneous fractured geological model based on the well-known Marmousi2 model in a two-dimensional case. The model of the deformable solid medium containing slip planes with nonlinear slip conditions on them and explicit–implicit numerical method is applied to obtain the synthetic seismic dataset for CNN training and validation.
期刊介绍:
The journal has as its objective the publication and wide electronic dissemination of innovative and consequential research in applied mechanics. IJAM welcomes high-quality original research papers in all aspects of applied mechanics from contributors throughout the world. The journal aims to promote the international exchange of new knowledge and recent development information in all aspects of applied mechanics. In addition to covering the classical branches of applied mechanics, namely solid mechanics, fluid mechanics, thermodynamics, and material science, the journal also encourages contributions from newly emerging areas such as biomechanics, electromechanics, the mechanical behavior of advanced materials, nanomechanics, and many other inter-disciplinary research areas in which the concepts of applied mechanics are extensively applied and developed.