未解决的主系统和卫星系统的中心定位算法

IF 1.8 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Astrophysics and Space Science Pub Date : 2024-05-27 DOI:10.1007/s10509-024-04316-4
J. N. Hao, Q. Y. Peng, B. F. Guo
{"title":"未解决的主系统和卫星系统的中心定位算法","authors":"J. N. Hao,&nbsp;Q. Y. Peng,&nbsp;B. F. Guo","doi":"10.1007/s10509-024-04316-4","DOIUrl":null,"url":null,"abstract":"<div><p>Affected by the Earth’s atmosphere, the image of a primary and satellite system may appear unresolved, such as the dwarf planet Haumea system. It is found by experiments that neither the two-dimensional Gaussian nor modified moment centering algorithms can accurately measure the photocenter of an image of unresolved primary and satellite system observed. This work investigates a specific centering algorithm to accurately measure the photocenter, which would be helpful to derive some physical parameters (e.g. orbital parameters and mass). Taking the dwarf planet Haumea and its brighter satellite Hi’iaka as an example, we simulate the motion of the photocenter with different seeings. We find that the photocenter of system changes significantly with seeings (∼0.074″ with the different seeings of 1″ and 3″) when using the two-dimensional Gaussian centering algorithm. However, the modified moment centering algorithm can accurately measure the photocenter of system without noises, but when noises are added its accuracy will be greatly influenced by noises. In this work, a new centering algorithm is proposed, which can accurately measure the photocenter with less influence of seeings and noises. Observations of dwarf planet Haumea taken over 25 nights are used to test the effectiveness of our proposed method. Compared with using two-dimensional Gaussian centering algorithm, the fitted parameter is slightly more accurate with less positional fitting errors when using the proposed method in this work. This method can also be applied to the centering of binary stars.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":"369 5","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Centering algorithm of an unresolved primary and satellite system\",\"authors\":\"J. N. Hao,&nbsp;Q. Y. Peng,&nbsp;B. F. Guo\",\"doi\":\"10.1007/s10509-024-04316-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Affected by the Earth’s atmosphere, the image of a primary and satellite system may appear unresolved, such as the dwarf planet Haumea system. It is found by experiments that neither the two-dimensional Gaussian nor modified moment centering algorithms can accurately measure the photocenter of an image of unresolved primary and satellite system observed. This work investigates a specific centering algorithm to accurately measure the photocenter, which would be helpful to derive some physical parameters (e.g. orbital parameters and mass). Taking the dwarf planet Haumea and its brighter satellite Hi’iaka as an example, we simulate the motion of the photocenter with different seeings. We find that the photocenter of system changes significantly with seeings (∼0.074″ with the different seeings of 1″ and 3″) when using the two-dimensional Gaussian centering algorithm. However, the modified moment centering algorithm can accurately measure the photocenter of system without noises, but when noises are added its accuracy will be greatly influenced by noises. In this work, a new centering algorithm is proposed, which can accurately measure the photocenter with less influence of seeings and noises. Observations of dwarf planet Haumea taken over 25 nights are used to test the effectiveness of our proposed method. Compared with using two-dimensional Gaussian centering algorithm, the fitted parameter is slightly more accurate with less positional fitting errors when using the proposed method in this work. This method can also be applied to the centering of binary stars.</p></div>\",\"PeriodicalId\":8644,\"journal\":{\"name\":\"Astrophysics and Space Science\",\"volume\":\"369 5\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrophysics and Space Science\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10509-024-04316-4\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysics and Space Science","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10509-024-04316-4","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

受地球大气层的影响,主星和卫星系统的图像可能会出现不分辨的情况,例如矮行星 Haumea 系统。实验发现,无论是二维高斯定心算法还是修正矩定心算法,都无法准确测量观测到的未分辨主星和卫星系统图像的光心。这项工作研究了一种精确测量光心的特定定心算法,这将有助于推导出一些物理参数(如轨道参数和质量)。以矮行星 Haumea 及其亮卫星 Hi'iaka 为例,我们模拟了不同视角下的光心运动。我们发现,在使用二维高斯定心算法时,系统的光心随着视角的变化而发生显著变化(1″和3″的不同视角下的变化量为0.074″)。然而,改进的矩中心算法在没有噪声的情况下可以精确测量系统的光心,但当加入噪声时,其精度会受到噪声的极大影响。本研究提出了一种新的定心算法,它可以在较小的视线和噪声影响下精确测量光心。我们利用对矮行星妊神星(Haumea)长达 25 个夜晚的观测来检验我们提出的方法的有效性。与使用二维高斯居中算法相比,使用本文提出的方法拟合的参数更准确,位置拟合误差更小。这种方法也可用于双星的定心。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Centering algorithm of an unresolved primary and satellite system

Affected by the Earth’s atmosphere, the image of a primary and satellite system may appear unresolved, such as the dwarf planet Haumea system. It is found by experiments that neither the two-dimensional Gaussian nor modified moment centering algorithms can accurately measure the photocenter of an image of unresolved primary and satellite system observed. This work investigates a specific centering algorithm to accurately measure the photocenter, which would be helpful to derive some physical parameters (e.g. orbital parameters and mass). Taking the dwarf planet Haumea and its brighter satellite Hi’iaka as an example, we simulate the motion of the photocenter with different seeings. We find that the photocenter of system changes significantly with seeings (∼0.074″ with the different seeings of 1″ and 3″) when using the two-dimensional Gaussian centering algorithm. However, the modified moment centering algorithm can accurately measure the photocenter of system without noises, but when noises are added its accuracy will be greatly influenced by noises. In this work, a new centering algorithm is proposed, which can accurately measure the photocenter with less influence of seeings and noises. Observations of dwarf planet Haumea taken over 25 nights are used to test the effectiveness of our proposed method. Compared with using two-dimensional Gaussian centering algorithm, the fitted parameter is slightly more accurate with less positional fitting errors when using the proposed method in this work. This method can also be applied to the centering of binary stars.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Astrophysics and Space Science
Astrophysics and Space Science 地学天文-天文与天体物理
CiteScore
3.40
自引率
5.30%
发文量
106
审稿时长
2-4 weeks
期刊介绍: Astrophysics and Space Science publishes original contributions and invited reviews covering the entire range of astronomy, astrophysics, astrophysical cosmology, planetary and space science and the astrophysical aspects of astrobiology. This includes both observational and theoretical research, the techniques of astronomical instrumentation and data analysis and astronomical space instrumentation. We particularly welcome papers in the general fields of high-energy astrophysics, astrophysical and astrochemical studies of the interstellar medium including star formation, planetary astrophysics, the formation and evolution of galaxies and the evolution of large scale structure in the Universe. Papers in mathematical physics or in general relativity which do not establish clear astrophysical applications will no longer be considered. The journal also publishes topically selected special issues in research fields of particular scientific interest. These consist of both invited reviews and original research papers. Conference proceedings will not be considered. All papers published in the journal are subject to thorough and strict peer-reviewing. Astrophysics and Space Science features short publication times after acceptance and colour printing free of charge.
期刊最新文献
Images in axially symmetric gravitational lenses from elliptical sources: the elimination method Following the tidal trail: a history of modeling the Magellanic Stream Investigation of non-substorm Pi2 magnetic pulsation during solar flare event Resolved stellar populations as a key to unlocking the formation and evolution of galaxies A real-time solar flare forecasting system with deep learning methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1