在谷歌感知网络中整合特征增强技术,用于乳腺癌检测和分类

IF 8.6 2区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS Journal of Big Data Pub Date : 2024-05-28 DOI:10.1186/s40537-024-00936-3
Wasyihun Sema Admass, Yirga Yayeh Munaye, Ayodeji Olalekan Salau
{"title":"在谷歌感知网络中整合特征增强技术,用于乳腺癌检测和分类","authors":"Wasyihun Sema Admass, Yirga Yayeh Munaye, Ayodeji Olalekan Salau","doi":"10.1186/s40537-024-00936-3","DOIUrl":null,"url":null,"abstract":"<p>Breast cancer is a major public health concern, and early detection and classification are essential for improving patient outcomes. However, breast tumors can be difficult to distinguish from benign tumors, leading to high false positive rates in screening. The reason is that both benign and malignant tumors have no consistent shape, are found at the same position, have variable sizes, and have high correlations. The ambiguity of the correlation challenges the computer-aided system, and the inconsistency of morphology challenges an expert in identifying and classifying what is positive and what is negative. Due to this, most of the time, breast cancer screen is prone to false positive rates. This research paper presents the introduction of a feature enhancement method into the Google inception network for breast cancer detection and classification. The proposed model preserves both local and global information, which is important for addressing the variability of breast tumor morphology and their complex correlations. A locally preserving projection transformation function is introduced to retain local information that might be lost in the intermediate output of the inception model. Additionally, transfer learning is used to improve the performance of the proposed model on limited datasets. The proposed model is evaluated on a dataset of ultrasound images and achieves an accuracy of 99.81%, recall of 96.48%, and sensitivity of 93.0%. These results demonstrate the effectiveness of the proposed method for breast cancer detection and classification.</p>","PeriodicalId":15158,"journal":{"name":"Journal of Big Data","volume":"29 1","pages":""},"PeriodicalIF":8.6000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integration of feature enhancement technique in Google inception network for breast cancer detection and classification\",\"authors\":\"Wasyihun Sema Admass, Yirga Yayeh Munaye, Ayodeji Olalekan Salau\",\"doi\":\"10.1186/s40537-024-00936-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Breast cancer is a major public health concern, and early detection and classification are essential for improving patient outcomes. However, breast tumors can be difficult to distinguish from benign tumors, leading to high false positive rates in screening. The reason is that both benign and malignant tumors have no consistent shape, are found at the same position, have variable sizes, and have high correlations. The ambiguity of the correlation challenges the computer-aided system, and the inconsistency of morphology challenges an expert in identifying and classifying what is positive and what is negative. Due to this, most of the time, breast cancer screen is prone to false positive rates. This research paper presents the introduction of a feature enhancement method into the Google inception network for breast cancer detection and classification. The proposed model preserves both local and global information, which is important for addressing the variability of breast tumor morphology and their complex correlations. A locally preserving projection transformation function is introduced to retain local information that might be lost in the intermediate output of the inception model. Additionally, transfer learning is used to improve the performance of the proposed model on limited datasets. The proposed model is evaluated on a dataset of ultrasound images and achieves an accuracy of 99.81%, recall of 96.48%, and sensitivity of 93.0%. These results demonstrate the effectiveness of the proposed method for breast cancer detection and classification.</p>\",\"PeriodicalId\":15158,\"journal\":{\"name\":\"Journal of Big Data\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Big Data\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1186/s40537-024-00936-3\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Big Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s40537-024-00936-3","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

乳腺癌是一个重大的公共卫生问题,早期检测和分类对改善患者预后至关重要。然而,乳腺肿瘤很难与良性肿瘤区分开来,导致筛查的假阳性率很高。究其原因,良性肿瘤和恶性肿瘤形状不一致、位置相同、大小不一、相关性高。相关性的模糊性给计算机辅助系统带来了挑战,而形态的不一致性又给专家鉴别和分类哪些是阳性哪些是阴性带来了挑战。因此,在大多数情况下,乳腺癌筛查容易出现假阳性率。本研究论文将一种特征增强方法引入谷歌萌芽网络,用于乳腺癌的检测和分类。所提出的模型同时保留了局部和全局信息,这对于解决乳腺肿瘤形态的多变性及其复杂的相关性非常重要。该模型引入了局部保存投影变换函数,以保留初始模型中间输出中可能丢失的局部信息。此外,还使用迁移学习来提高所提模型在有限数据集上的性能。该模型在超声波图像数据集上进行了评估,准确率达到 99.81%,召回率达到 96.48%,灵敏度达到 93.0%。这些结果证明了所提方法在乳腺癌检测和分类方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integration of feature enhancement technique in Google inception network for breast cancer detection and classification

Breast cancer is a major public health concern, and early detection and classification are essential for improving patient outcomes. However, breast tumors can be difficult to distinguish from benign tumors, leading to high false positive rates in screening. The reason is that both benign and malignant tumors have no consistent shape, are found at the same position, have variable sizes, and have high correlations. The ambiguity of the correlation challenges the computer-aided system, and the inconsistency of morphology challenges an expert in identifying and classifying what is positive and what is negative. Due to this, most of the time, breast cancer screen is prone to false positive rates. This research paper presents the introduction of a feature enhancement method into the Google inception network for breast cancer detection and classification. The proposed model preserves both local and global information, which is important for addressing the variability of breast tumor morphology and their complex correlations. A locally preserving projection transformation function is introduced to retain local information that might be lost in the intermediate output of the inception model. Additionally, transfer learning is used to improve the performance of the proposed model on limited datasets. The proposed model is evaluated on a dataset of ultrasound images and achieves an accuracy of 99.81%, recall of 96.48%, and sensitivity of 93.0%. These results demonstrate the effectiveness of the proposed method for breast cancer detection and classification.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Big Data
Journal of Big Data Computer Science-Information Systems
CiteScore
17.80
自引率
3.70%
发文量
105
审稿时长
13 weeks
期刊介绍: The Journal of Big Data publishes high-quality, scholarly research papers, methodologies, and case studies covering a broad spectrum of topics, from big data analytics to data-intensive computing and all applications of big data research. It addresses challenges facing big data today and in the future, including data capture and storage, search, sharing, analytics, technologies, visualization, architectures, data mining, machine learning, cloud computing, distributed systems, and scalable storage. The journal serves as a seminal source of innovative material for academic researchers and practitioners alike.
期刊最新文献
Shielding networks: enhancing intrusion detection with hybrid feature selection and stack ensemble learning Machine learning and deep learning models based grid search cross validation for short-term solar irradiance forecasting Optimizing poultry audio signal classification with deep learning and burn layer fusion Integrating microarray-based spatial transcriptomics and RNA-seq reveals tissue architecture in colorectal cancer A model for investment type recommender system based on the potential investors based on investors and experts feedback using ANFIS and MNN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1