利用基于 Voronoi-Based 的障碍物建模和 Q-Learning 增强复杂环境中的多无人飞行器路径规划

IF 1.1 4区 工程技术 Q3 ENGINEERING, AEROSPACE International Journal of Aerospace Engineering Pub Date : 2024-05-27 DOI:10.1155/2024/5114696
Wenjia Su, Min Gao, Xinbao Gao, Zhaolong Xuan
{"title":"利用基于 Voronoi-Based 的障碍物建模和 Q-Learning 增强复杂环境中的多无人飞行器路径规划","authors":"Wenjia Su, Min Gao, Xinbao Gao, Zhaolong Xuan","doi":"10.1155/2024/5114696","DOIUrl":null,"url":null,"abstract":"To tackle the challenge of obstacle avoidance path planning for multiple unmanned aerial vehicles (UAVs) in intricate environments, this study introduces a Voronoi graph–based model to represent the obstacle-laden environment and employs a Markov decision process (MDP) for single UAV path planning. The traditional Q-learning algorithm is enhanced by adjusting the initial state of the Q-table and fine-tuning the reward and penalty values, enabling the acquisition of efficient obstacle avoidance paths for individual UAVs in complex settings. Leveraging the improved Q-learning algorithm for single UAVs, the Q-table is iteratively refined for a fleet of UAVs, with dynamic modifications based on the waypoints chosen by each UAV. This approach ensures the generation of collision-free paths for multiple UAVs, as validated by simulation results that showcase the algorithm’s effectiveness in learning from past training data. The proposed method offers a robust framework for practical UAV trajectory generation in complex environments.","PeriodicalId":13748,"journal":{"name":"International Journal of Aerospace Engineering","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Multi-UAV Path Planning in Complex Environments With Voronoi-Based Obstacle Modelling and Q-Learning\",\"authors\":\"Wenjia Su, Min Gao, Xinbao Gao, Zhaolong Xuan\",\"doi\":\"10.1155/2024/5114696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To tackle the challenge of obstacle avoidance path planning for multiple unmanned aerial vehicles (UAVs) in intricate environments, this study introduces a Voronoi graph–based model to represent the obstacle-laden environment and employs a Markov decision process (MDP) for single UAV path planning. The traditional Q-learning algorithm is enhanced by adjusting the initial state of the Q-table and fine-tuning the reward and penalty values, enabling the acquisition of efficient obstacle avoidance paths for individual UAVs in complex settings. Leveraging the improved Q-learning algorithm for single UAVs, the Q-table is iteratively refined for a fleet of UAVs, with dynamic modifications based on the waypoints chosen by each UAV. This approach ensures the generation of collision-free paths for multiple UAVs, as validated by simulation results that showcase the algorithm’s effectiveness in learning from past training data. The proposed method offers a robust framework for practical UAV trajectory generation in complex environments.\",\"PeriodicalId\":13748,\"journal\":{\"name\":\"International Journal of Aerospace Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Aerospace Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/5114696\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Aerospace Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/5114696","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

为解决复杂环境中多个无人飞行器(UAV)的避障路径规划难题,本研究引入了基于 Voronoi 图的模型来表示障碍物密集的环境,并采用马尔可夫决策过程(MDP)来进行单个无人飞行器的路径规划。通过调整 Q 表的初始状态和微调奖惩值,改进了传统的 Q-learning 算法,使单个无人飞行器能够在复杂环境中获得高效的避障路径。利用针对单个无人机的改进型 Q 学习算法,对无人机群的 Q 表进行迭代改进,并根据每个无人机选择的航点进行动态修改。这种方法可确保为多个无人机生成无碰撞路径,仿真结果也验证了这一点,展示了该算法从过去的训练数据中学习的有效性。所提出的方法为在复杂环境中生成实用的无人机轨迹提供了一个稳健的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhanced Multi-UAV Path Planning in Complex Environments With Voronoi-Based Obstacle Modelling and Q-Learning
To tackle the challenge of obstacle avoidance path planning for multiple unmanned aerial vehicles (UAVs) in intricate environments, this study introduces a Voronoi graph–based model to represent the obstacle-laden environment and employs a Markov decision process (MDP) for single UAV path planning. The traditional Q-learning algorithm is enhanced by adjusting the initial state of the Q-table and fine-tuning the reward and penalty values, enabling the acquisition of efficient obstacle avoidance paths for individual UAVs in complex settings. Leveraging the improved Q-learning algorithm for single UAVs, the Q-table is iteratively refined for a fleet of UAVs, with dynamic modifications based on the waypoints chosen by each UAV. This approach ensures the generation of collision-free paths for multiple UAVs, as validated by simulation results that showcase the algorithm’s effectiveness in learning from past training data. The proposed method offers a robust framework for practical UAV trajectory generation in complex environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
7.10%
发文量
195
审稿时长
22 weeks
期刊介绍: International Journal of Aerospace Engineering aims to serve the international aerospace engineering community through dissemination of scientific knowledge on practical engineering and design methodologies pertaining to aircraft and space vehicles. Original unpublished manuscripts are solicited on all areas of aerospace engineering including but not limited to: -Mechanics of materials and structures- Aerodynamics and fluid mechanics- Dynamics and control- Aeroacoustics- Aeroelasticity- Propulsion and combustion- Avionics and systems- Flight simulation and mechanics- Unmanned air vehicles (UAVs). Review articles on any of the above topics are also welcome.
期刊最新文献
Comparative Study and Airspeed Sensitivity Analysis of Full-Wing Solar-Powered UAVs Using Rigid-Body, Multibody, and Rigid-Flexible Combo Models Enhanced Multi-UAV Path Planning in Complex Environments With Voronoi-Based Obstacle Modelling and Q-Learning Multi-UAV Cooperative Air Combat Target Assignment Method Based on VNS-IBPSO in Complex Dynamic Environment A Novel Strategy for Hypersonic Vehicle With Complex Distributed No-Fly Zone Constraints Development of Anisogrid Lattice Composite Structures for Fighter Wing Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1