Shitao Yang, Xiao Yi, Richang Dong, Yifan Wu, Tao Shuai, Jun Zhang, Qianyi Ren, Wenbin Gong
{"title":"基于稀疏采样 LSTM 算法的导航星座长期自主计时","authors":"Shitao Yang, Xiao Yi, Richang Dong, Yifan Wu, Tao Shuai, Jun Zhang, Qianyi Ren, Wenbin Gong","doi":"10.1186/s43020-024-00137-6","DOIUrl":null,"url":null,"abstract":"The system time of the four major navigation satellite systems is mainly maintained by multiple high-performance atomic clocks at ground stations. This operational mode relies heavily on the support of ground stations. To enhance the high-precision autonomous timing capability of next-generation navigation satellites, it is necessary to autonomously generate a comprehensive space-based time scale on orbit and make long-term, high-precision predictions for the clock error of this time scale. In order to solve these two problems, this paper proposed a two-level satellite timing system, and used multiple time-keeping node satellites to generate a more stable space-based time scale. Then this paper used the sparse sampling Long Short-Term Memory (LSTM) algorithm to improve the accuracy of clock error long-term prediction on space-based time scale. After simulation, at sampling times of 300 s, 8.64 × 104 s, and 1 × 106 s, the frequency stabilities of the spaceborne timescale reach 1.35 × 10–15, 3.37 × 10–16, and 2.81 × 10–16, respectively. When applying the improved clock error prediction algorithm, the ten-day prediction error is 3.16 × 10–10 s. Compared with those of the continuous sampling LSTM, Kalman filter, polynomial and quadratic polynomial models, the corresponding prediction accuracies are 1.72, 1.56, 1.83 and 1.36 times greater, respectively.","PeriodicalId":52643,"journal":{"name":"Satellite Navigation","volume":null,"pages":null},"PeriodicalIF":9.0000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-term autonomous time-keeping of navigation constellations based on sparse sampling LSTM algorithm\",\"authors\":\"Shitao Yang, Xiao Yi, Richang Dong, Yifan Wu, Tao Shuai, Jun Zhang, Qianyi Ren, Wenbin Gong\",\"doi\":\"10.1186/s43020-024-00137-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The system time of the four major navigation satellite systems is mainly maintained by multiple high-performance atomic clocks at ground stations. This operational mode relies heavily on the support of ground stations. To enhance the high-precision autonomous timing capability of next-generation navigation satellites, it is necessary to autonomously generate a comprehensive space-based time scale on orbit and make long-term, high-precision predictions for the clock error of this time scale. In order to solve these two problems, this paper proposed a two-level satellite timing system, and used multiple time-keeping node satellites to generate a more stable space-based time scale. Then this paper used the sparse sampling Long Short-Term Memory (LSTM) algorithm to improve the accuracy of clock error long-term prediction on space-based time scale. After simulation, at sampling times of 300 s, 8.64 × 104 s, and 1 × 106 s, the frequency stabilities of the spaceborne timescale reach 1.35 × 10–15, 3.37 × 10–16, and 2.81 × 10–16, respectively. When applying the improved clock error prediction algorithm, the ten-day prediction error is 3.16 × 10–10 s. Compared with those of the continuous sampling LSTM, Kalman filter, polynomial and quadratic polynomial models, the corresponding prediction accuracies are 1.72, 1.56, 1.83 and 1.36 times greater, respectively.\",\"PeriodicalId\":52643,\"journal\":{\"name\":\"Satellite Navigation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Satellite Navigation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s43020-024-00137-6\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Satellite Navigation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s43020-024-00137-6","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Long-term autonomous time-keeping of navigation constellations based on sparse sampling LSTM algorithm
The system time of the four major navigation satellite systems is mainly maintained by multiple high-performance atomic clocks at ground stations. This operational mode relies heavily on the support of ground stations. To enhance the high-precision autonomous timing capability of next-generation navigation satellites, it is necessary to autonomously generate a comprehensive space-based time scale on orbit and make long-term, high-precision predictions for the clock error of this time scale. In order to solve these two problems, this paper proposed a two-level satellite timing system, and used multiple time-keeping node satellites to generate a more stable space-based time scale. Then this paper used the sparse sampling Long Short-Term Memory (LSTM) algorithm to improve the accuracy of clock error long-term prediction on space-based time scale. After simulation, at sampling times of 300 s, 8.64 × 104 s, and 1 × 106 s, the frequency stabilities of the spaceborne timescale reach 1.35 × 10–15, 3.37 × 10–16, and 2.81 × 10–16, respectively. When applying the improved clock error prediction algorithm, the ten-day prediction error is 3.16 × 10–10 s. Compared with those of the continuous sampling LSTM, Kalman filter, polynomial and quadratic polynomial models, the corresponding prediction accuracies are 1.72, 1.56, 1.83 and 1.36 times greater, respectively.
期刊介绍:
Satellite Navigation is dedicated to presenting innovative ideas, new findings, and advancements in the theoretical techniques and applications of satellite navigation. The journal actively invites original articles, reviews, and commentaries to contribute to the exploration and dissemination of knowledge in this field.