Ahmad Alhawarat, Zabidin Salleh, Hanan Alolaiyan, Hamid El Hor, Shahrina Ismail
{"title":"三期共轭梯度下降法及其一些应用","authors":"Ahmad Alhawarat, Zabidin Salleh, Hanan Alolaiyan, Hamid El Hor, Shahrina Ismail","doi":"10.1186/s13660-024-03142-0","DOIUrl":null,"url":null,"abstract":"The stationary point of optimization problems can be obtained via conjugate gradient (CG) methods without the second derivative. Many researchers have used this method to solve applications in various fields, such as neural networks and image restoration. In this study, we construct a three-term CG method that fulfills convergence analysis and a descent property. Next, in the second term, we employ a Hestenses-Stiefel CG formula with some restrictions to be positive. The third term includes a negative gradient used as a search direction multiplied by an accelerating expression. We also provide some numerical results collected using a strong Wolfe line search with different sigma values over 166 optimization functions from the CUTEr library. The result shows the proposed approach is far more efficient than alternative prevalent CG methods regarding central processing unit (CPU) time, number of iterations, number of function evaluations, and gradient evaluations. Moreover, we present some applications for the proposed three-term search direction in image restoration, and we compare the results with well-known CG methods with respect to the number of iterations, CPU time, as well as root-mean-square error (RMSE). Finally, we present three applications in regression analysis, image restoration, and electrical engineering.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A three-term conjugate gradient descent method with some applications\",\"authors\":\"Ahmad Alhawarat, Zabidin Salleh, Hanan Alolaiyan, Hamid El Hor, Shahrina Ismail\",\"doi\":\"10.1186/s13660-024-03142-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The stationary point of optimization problems can be obtained via conjugate gradient (CG) methods without the second derivative. Many researchers have used this method to solve applications in various fields, such as neural networks and image restoration. In this study, we construct a three-term CG method that fulfills convergence analysis and a descent property. Next, in the second term, we employ a Hestenses-Stiefel CG formula with some restrictions to be positive. The third term includes a negative gradient used as a search direction multiplied by an accelerating expression. We also provide some numerical results collected using a strong Wolfe line search with different sigma values over 166 optimization functions from the CUTEr library. The result shows the proposed approach is far more efficient than alternative prevalent CG methods regarding central processing unit (CPU) time, number of iterations, number of function evaluations, and gradient evaluations. Moreover, we present some applications for the proposed three-term search direction in image restoration, and we compare the results with well-known CG methods with respect to the number of iterations, CPU time, as well as root-mean-square error (RMSE). Finally, we present three applications in regression analysis, image restoration, and electrical engineering.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1186/s13660-024-03142-0\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13660-024-03142-0","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A three-term conjugate gradient descent method with some applications
The stationary point of optimization problems can be obtained via conjugate gradient (CG) methods without the second derivative. Many researchers have used this method to solve applications in various fields, such as neural networks and image restoration. In this study, we construct a three-term CG method that fulfills convergence analysis and a descent property. Next, in the second term, we employ a Hestenses-Stiefel CG formula with some restrictions to be positive. The third term includes a negative gradient used as a search direction multiplied by an accelerating expression. We also provide some numerical results collected using a strong Wolfe line search with different sigma values over 166 optimization functions from the CUTEr library. The result shows the proposed approach is far more efficient than alternative prevalent CG methods regarding central processing unit (CPU) time, number of iterations, number of function evaluations, and gradient evaluations. Moreover, we present some applications for the proposed three-term search direction in image restoration, and we compare the results with well-known CG methods with respect to the number of iterations, CPU time, as well as root-mean-square error (RMSE). Finally, we present three applications in regression analysis, image restoration, and electrical engineering.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.