{"title":"虚拟字符控制的神经回路策略","authors":"Waleed Razzaq, Kashif Raza","doi":"10.1007/s11063-024-11640-x","DOIUrl":null,"url":null,"abstract":"<p>The development of high-stakes decision-making neural agents that interact with complex environments, such as video games, is an important aspect of AI research with numerous potential applications. Reinforcement learning combined with deep learning architectures (DRL) has shown remarkable success in various genres of games. The performance of DRL is heavily dependent upon the neural networks resides within them. Although these algorithms perform well in offline testing but the performance deteriorates in noisy and sub-optimal conditions, creating safety and security issues. To address these, we propose a hybrid deep learning architecture that combines a traditional convolutional neural network with worm brain-inspired neural circuit policies. This allows the agent to learn key coherent features from the environment and interpret its dynamics. The obtained DRL agent was not only able to achieve an optimal policy quickly, but it was also the most noise-resilient with the highest success rate. Our research indicates that only 20 control neurons (12 inter-neurons and 8 command neurons) are sufficient to achieve competitive results. We implemented and analyzed the agent in the popular video game Doom, demonstrating its effectiveness in practical applications.\n</p>","PeriodicalId":51144,"journal":{"name":"Neural Processing Letters","volume":"44 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural Circuit Policies for Virtual Character Control\",\"authors\":\"Waleed Razzaq, Kashif Raza\",\"doi\":\"10.1007/s11063-024-11640-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The development of high-stakes decision-making neural agents that interact with complex environments, such as video games, is an important aspect of AI research with numerous potential applications. Reinforcement learning combined with deep learning architectures (DRL) has shown remarkable success in various genres of games. The performance of DRL is heavily dependent upon the neural networks resides within them. Although these algorithms perform well in offline testing but the performance deteriorates in noisy and sub-optimal conditions, creating safety and security issues. To address these, we propose a hybrid deep learning architecture that combines a traditional convolutional neural network with worm brain-inspired neural circuit policies. This allows the agent to learn key coherent features from the environment and interpret its dynamics. The obtained DRL agent was not only able to achieve an optimal policy quickly, but it was also the most noise-resilient with the highest success rate. Our research indicates that only 20 control neurons (12 inter-neurons and 8 command neurons) are sufficient to achieve competitive results. We implemented and analyzed the agent in the popular video game Doom, demonstrating its effectiveness in practical applications.\\n</p>\",\"PeriodicalId\":51144,\"journal\":{\"name\":\"Neural Processing Letters\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Processing Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11063-024-11640-x\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Processing Letters","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11063-024-11640-x","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Neural Circuit Policies for Virtual Character Control
The development of high-stakes decision-making neural agents that interact with complex environments, such as video games, is an important aspect of AI research with numerous potential applications. Reinforcement learning combined with deep learning architectures (DRL) has shown remarkable success in various genres of games. The performance of DRL is heavily dependent upon the neural networks resides within them. Although these algorithms perform well in offline testing but the performance deteriorates in noisy and sub-optimal conditions, creating safety and security issues. To address these, we propose a hybrid deep learning architecture that combines a traditional convolutional neural network with worm brain-inspired neural circuit policies. This allows the agent to learn key coherent features from the environment and interpret its dynamics. The obtained DRL agent was not only able to achieve an optimal policy quickly, but it was also the most noise-resilient with the highest success rate. Our research indicates that only 20 control neurons (12 inter-neurons and 8 command neurons) are sufficient to achieve competitive results. We implemented and analyzed the agent in the popular video game Doom, demonstrating its effectiveness in practical applications.
期刊介绍:
Neural Processing Letters is an international journal publishing research results and innovative ideas on all aspects of artificial neural networks. Coverage includes theoretical developments, biological models, new formal modes, learning, applications, software and hardware developments, and prospective researches.
The journal promotes fast exchange of information in the community of neural network researchers and users. The resurgence of interest in the field of artificial neural networks since the beginning of the 1980s is coupled to tremendous research activity in specialized or multidisciplinary groups. Research, however, is not possible without good communication between people and the exchange of information, especially in a field covering such different areas; fast communication is also a key aspect, and this is the reason for Neural Processing Letters