B. A. Kargin, E. G. Kablukova, Q. Mu, S. M. Prigarin
{"title":"蒙特卡洛法数值模拟晶体云中的太阳能辐射传输","authors":"B. A. Kargin, E. G. Kablukova, Q. Mu, S. M. Prigarin","doi":"10.1134/s1995423924020046","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The paper deals with numerical simulations related to radiation transfer in ice clouds. A mathematical model of crystal particles of irregular shape and an algorithm for modeling such particles based on constructing a convex hull of a set of random points are considered. Two approaches to simulating radiation transfer in optically anisotropic clouds are studied. One approach uses pre-calculated scattering phase functions for crystals of various shapes and orientations. In the other approach, no knowledge of phase functions is required; the radiation scattering angle is simulated directly at interaction of a photon with faces of crystal. This approach enables simple adjustment of the input parameters of the problem to changing microphysical characteristics of the environment, including the shape, orientation, and transparency of particles and roughness of their boundaries, and does not require time-consuming pre-calculations. The impact of flutter on the radiation transfer by the cloud layer and angular distributions of the reflected and transmitted radiation are studied.</p>","PeriodicalId":43697,"journal":{"name":"Numerical Analysis and Applications","volume":"39 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monte Carlo Method for Numerical Simulation of Solar Energy Radiation Transfer in Crystal Clouds\",\"authors\":\"B. A. Kargin, E. G. Kablukova, Q. Mu, S. M. Prigarin\",\"doi\":\"10.1134/s1995423924020046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>The paper deals with numerical simulations related to radiation transfer in ice clouds. A mathematical model of crystal particles of irregular shape and an algorithm for modeling such particles based on constructing a convex hull of a set of random points are considered. Two approaches to simulating radiation transfer in optically anisotropic clouds are studied. One approach uses pre-calculated scattering phase functions for crystals of various shapes and orientations. In the other approach, no knowledge of phase functions is required; the radiation scattering angle is simulated directly at interaction of a photon with faces of crystal. This approach enables simple adjustment of the input parameters of the problem to changing microphysical characteristics of the environment, including the shape, orientation, and transparency of particles and roughness of their boundaries, and does not require time-consuming pre-calculations. The impact of flutter on the radiation transfer by the cloud layer and angular distributions of the reflected and transmitted radiation are studied.</p>\",\"PeriodicalId\":43697,\"journal\":{\"name\":\"Numerical Analysis and Applications\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1134/s1995423924020046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1134/s1995423924020046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Monte Carlo Method for Numerical Simulation of Solar Energy Radiation Transfer in Crystal Clouds
Abstract
The paper deals with numerical simulations related to radiation transfer in ice clouds. A mathematical model of crystal particles of irregular shape and an algorithm for modeling such particles based on constructing a convex hull of a set of random points are considered. Two approaches to simulating radiation transfer in optically anisotropic clouds are studied. One approach uses pre-calculated scattering phase functions for crystals of various shapes and orientations. In the other approach, no knowledge of phase functions is required; the radiation scattering angle is simulated directly at interaction of a photon with faces of crystal. This approach enables simple adjustment of the input parameters of the problem to changing microphysical characteristics of the environment, including the shape, orientation, and transparency of particles and roughness of their boundaries, and does not require time-consuming pre-calculations. The impact of flutter on the radiation transfer by the cloud layer and angular distributions of the reflected and transmitted radiation are studied.
期刊介绍:
Numerical Analysis and Applications is the translation of Russian periodical Sibirskii Zhurnal Vychislitel’noi Matematiki (Siberian Journal of Numerical Mathematics) published by the Siberian Branch of the Russian Academy of Sciences Publishing House since 1998.
The aim of this journal is to demonstrate, in concentrated form, to the Russian and International Mathematical Community the latest and most important investigations of Siberian numerical mathematicians in various scientific and engineering fields.
The journal deals with the following topics: Theory and practice of computational methods, mathematical physics, and other applied fields; Mathematical models of elasticity theory, hydrodynamics, gas dynamics, and geophysics; Parallelizing of algorithms; Models and methods of bioinformatics.