Amitabh Basu, Hongyi Jiang, Phillip Kerger, Marco Molinaro
{"title":"混合整数凸优化的信息复杂性","authors":"Amitabh Basu, Hongyi Jiang, Phillip Kerger, Marco Molinaro","doi":"10.1007/s10107-024-02099-8","DOIUrl":null,"url":null,"abstract":"<p>We investigate the information complexity of mixed-integer convex optimization under different types of oracles. We establish new lower bounds for the standard first-order oracle, improving upon the previous best known lower bound. This leaves only a lower order linear term (in the dimension) as the gap between the lower and upper bounds. This is derived as a corollary of a more fundamental “transfer” result that shows how lower bounds on information complexity of continuous convex optimization under different oracles can be transferred to the mixed-integer setting in a black-box manner. Further, we (to the best of our knowledge) initiate the study of, and obtain the first set of results on, information complexity under oracles that only reveal <i>partial</i> first-order information, e.g., where one can only make a binary query over the function value or subgradient at a given point. We give algorithms for (mixed-integer) convex optimization that work under these less informative oracles. We also give lower bounds showing that, for some of these oracles, every algorithm requires more iterations to achieve a target error compared to when complete first-order information is available. That is, these oracles are provably less informative than full first-order oracles for the purpose of optimization.</p>","PeriodicalId":18297,"journal":{"name":"Mathematical Programming","volume":"21 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Information complexity of mixed-integer convex optimization\",\"authors\":\"Amitabh Basu, Hongyi Jiang, Phillip Kerger, Marco Molinaro\",\"doi\":\"10.1007/s10107-024-02099-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We investigate the information complexity of mixed-integer convex optimization under different types of oracles. We establish new lower bounds for the standard first-order oracle, improving upon the previous best known lower bound. This leaves only a lower order linear term (in the dimension) as the gap between the lower and upper bounds. This is derived as a corollary of a more fundamental “transfer” result that shows how lower bounds on information complexity of continuous convex optimization under different oracles can be transferred to the mixed-integer setting in a black-box manner. Further, we (to the best of our knowledge) initiate the study of, and obtain the first set of results on, information complexity under oracles that only reveal <i>partial</i> first-order information, e.g., where one can only make a binary query over the function value or subgradient at a given point. We give algorithms for (mixed-integer) convex optimization that work under these less informative oracles. We also give lower bounds showing that, for some of these oracles, every algorithm requires more iterations to achieve a target error compared to when complete first-order information is available. That is, these oracles are provably less informative than full first-order oracles for the purpose of optimization.</p>\",\"PeriodicalId\":18297,\"journal\":{\"name\":\"Mathematical Programming\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Programming\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10107-024-02099-8\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Programming","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10107-024-02099-8","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Information complexity of mixed-integer convex optimization
We investigate the information complexity of mixed-integer convex optimization under different types of oracles. We establish new lower bounds for the standard first-order oracle, improving upon the previous best known lower bound. This leaves only a lower order linear term (in the dimension) as the gap between the lower and upper bounds. This is derived as a corollary of a more fundamental “transfer” result that shows how lower bounds on information complexity of continuous convex optimization under different oracles can be transferred to the mixed-integer setting in a black-box manner. Further, we (to the best of our knowledge) initiate the study of, and obtain the first set of results on, information complexity under oracles that only reveal partial first-order information, e.g., where one can only make a binary query over the function value or subgradient at a given point. We give algorithms for (mixed-integer) convex optimization that work under these less informative oracles. We also give lower bounds showing that, for some of these oracles, every algorithm requires more iterations to achieve a target error compared to when complete first-order information is available. That is, these oracles are provably less informative than full first-order oracles for the purpose of optimization.
期刊介绍:
Mathematical Programming publishes original articles dealing with every aspect of mathematical optimization; that is, everything of direct or indirect use concerning the problem of optimizing a function of many variables, often subject to a set of constraints. This involves theoretical and computational issues as well as application studies. Included, along with the standard topics of linear, nonlinear, integer, conic, stochastic and combinatorial optimization, are techniques for formulating and applying mathematical programming models, convex, nonsmooth and variational analysis, the theory of polyhedra, variational inequalities, and control and game theory viewed from the perspective of mathematical programming.