Karima Makhlouf, Héber H. Arcolezi, Sami Zhioua, Ghassen Ben Brahim, Catuscia Palamidessi
{"title":"多维局部差异隐私对公平性的影响","authors":"Karima Makhlouf, Héber H. Arcolezi, Sami Zhioua, Ghassen Ben Brahim, Catuscia Palamidessi","doi":"10.1007/s10618-024-01031-0","DOIUrl":null,"url":null,"abstract":"<p>Automated decision systems are increasingly used to make consequential decisions in people’s lives. Due to the sensitivity of the manipulated data and the resulting decisions, several ethical concerns need to be addressed for the appropriate use of such technologies, particularly fairness and privacy. Unlike previous work, which focused on centralized differential privacy (DP) or on local DP (LDP) for a single sensitive attribute, in this paper, we examine the impact of LDP in the presence of several sensitive attributes (i.e., <i>multi-dimensional data</i>) on fairness. Detailed empirical analysis on synthetic and benchmark datasets revealed very relevant observations. In particular, (1) multi-dimensional LDP is an efficient approach to reduce disparity, (2) the variant of the multi-dimensional approach of LDP (we employ two variants) matters only at low privacy guarantees (high <span>\\(\\epsilon\\)</span>), and (3) the true decision distribution has an important effect on which group is more sensitive to the obfuscation. Last, we summarize our findings in the form of recommendations to guide practitioners in adopting effective privacy-preserving practices while maintaining fairness and utility in machine learning applications.</p>","PeriodicalId":55183,"journal":{"name":"Data Mining and Knowledge Discovery","volume":"37 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the impact of multi-dimensional local differential privacy on fairness\",\"authors\":\"Karima Makhlouf, Héber H. Arcolezi, Sami Zhioua, Ghassen Ben Brahim, Catuscia Palamidessi\",\"doi\":\"10.1007/s10618-024-01031-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Automated decision systems are increasingly used to make consequential decisions in people’s lives. Due to the sensitivity of the manipulated data and the resulting decisions, several ethical concerns need to be addressed for the appropriate use of such technologies, particularly fairness and privacy. Unlike previous work, which focused on centralized differential privacy (DP) or on local DP (LDP) for a single sensitive attribute, in this paper, we examine the impact of LDP in the presence of several sensitive attributes (i.e., <i>multi-dimensional data</i>) on fairness. Detailed empirical analysis on synthetic and benchmark datasets revealed very relevant observations. In particular, (1) multi-dimensional LDP is an efficient approach to reduce disparity, (2) the variant of the multi-dimensional approach of LDP (we employ two variants) matters only at low privacy guarantees (high <span>\\\\(\\\\epsilon\\\\)</span>), and (3) the true decision distribution has an important effect on which group is more sensitive to the obfuscation. Last, we summarize our findings in the form of recommendations to guide practitioners in adopting effective privacy-preserving practices while maintaining fairness and utility in machine learning applications.</p>\",\"PeriodicalId\":55183,\"journal\":{\"name\":\"Data Mining and Knowledge Discovery\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data Mining and Knowledge Discovery\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10618-024-01031-0\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Mining and Knowledge Discovery","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10618-024-01031-0","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
On the impact of multi-dimensional local differential privacy on fairness
Automated decision systems are increasingly used to make consequential decisions in people’s lives. Due to the sensitivity of the manipulated data and the resulting decisions, several ethical concerns need to be addressed for the appropriate use of such technologies, particularly fairness and privacy. Unlike previous work, which focused on centralized differential privacy (DP) or on local DP (LDP) for a single sensitive attribute, in this paper, we examine the impact of LDP in the presence of several sensitive attributes (i.e., multi-dimensional data) on fairness. Detailed empirical analysis on synthetic and benchmark datasets revealed very relevant observations. In particular, (1) multi-dimensional LDP is an efficient approach to reduce disparity, (2) the variant of the multi-dimensional approach of LDP (we employ two variants) matters only at low privacy guarantees (high \(\epsilon\)), and (3) the true decision distribution has an important effect on which group is more sensitive to the obfuscation. Last, we summarize our findings in the form of recommendations to guide practitioners in adopting effective privacy-preserving practices while maintaining fairness and utility in machine learning applications.
期刊介绍:
Advances in data gathering, storage, and distribution have created a need for computational tools and techniques to aid in data analysis. Data Mining and Knowledge Discovery in Databases (KDD) is a rapidly growing area of research and application that builds on techniques and theories from many fields, including statistics, databases, pattern recognition and learning, data visualization, uncertainty modelling, data warehousing and OLAP, optimization, and high performance computing.