{"title":"模型参考自适应滑模控制中的监督学习","authors":"Omar Makke, Feng Lin","doi":"10.1007/s12555-023-0761-4","DOIUrl":null,"url":null,"abstract":"<p>The well known back-propagation algorithm has revolutionized machine learning and artificial intelligence, particularly in neural network applications. Although gradient descent-based algorithms are utilized in control applications, they are not as prevalent as in neural network applications. This discrepancy can be attributed to the successful development of various adaptation laws which ensure system stability while meeting the required design criteria. Many of these laws can be found in model reference adaptive control (MRAC) and adaptive sliding mode control (ASMC). This paper investigates the applicability of the Brandt-Lin (B-L) learning algorithm, mathematically equivalent to the back-propagation algorithm, in adaptive control applications. We find that combining the B-L learning algorithm with SMC yields a robust controller suitable for model reference adaptive sliding mode control (MRA-SMC). The controller is applicable to linear and a class of nonlinear dynamic systems and is suitable for efficient implementation. We derive the stability criteria for this controller and conduct simulations to study the adaptation’s impact on chattering. Our work exemplifies one approach to adopt the back-propagation algorithm in control applications.</p>","PeriodicalId":54965,"journal":{"name":"International Journal of Control Automation and Systems","volume":"134 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Supervised Learning in Model Reference Adaptive Sliding Mode Control\",\"authors\":\"Omar Makke, Feng Lin\",\"doi\":\"10.1007/s12555-023-0761-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The well known back-propagation algorithm has revolutionized machine learning and artificial intelligence, particularly in neural network applications. Although gradient descent-based algorithms are utilized in control applications, they are not as prevalent as in neural network applications. This discrepancy can be attributed to the successful development of various adaptation laws which ensure system stability while meeting the required design criteria. Many of these laws can be found in model reference adaptive control (MRAC) and adaptive sliding mode control (ASMC). This paper investigates the applicability of the Brandt-Lin (B-L) learning algorithm, mathematically equivalent to the back-propagation algorithm, in adaptive control applications. We find that combining the B-L learning algorithm with SMC yields a robust controller suitable for model reference adaptive sliding mode control (MRA-SMC). The controller is applicable to linear and a class of nonlinear dynamic systems and is suitable for efficient implementation. We derive the stability criteria for this controller and conduct simulations to study the adaptation’s impact on chattering. Our work exemplifies one approach to adopt the back-propagation algorithm in control applications.</p>\",\"PeriodicalId\":54965,\"journal\":{\"name\":\"International Journal of Control Automation and Systems\",\"volume\":\"134 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Control Automation and Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s12555-023-0761-4\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Control Automation and Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12555-023-0761-4","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Supervised Learning in Model Reference Adaptive Sliding Mode Control
The well known back-propagation algorithm has revolutionized machine learning and artificial intelligence, particularly in neural network applications. Although gradient descent-based algorithms are utilized in control applications, they are not as prevalent as in neural network applications. This discrepancy can be attributed to the successful development of various adaptation laws which ensure system stability while meeting the required design criteria. Many of these laws can be found in model reference adaptive control (MRAC) and adaptive sliding mode control (ASMC). This paper investigates the applicability of the Brandt-Lin (B-L) learning algorithm, mathematically equivalent to the back-propagation algorithm, in adaptive control applications. We find that combining the B-L learning algorithm with SMC yields a robust controller suitable for model reference adaptive sliding mode control (MRA-SMC). The controller is applicable to linear and a class of nonlinear dynamic systems and is suitable for efficient implementation. We derive the stability criteria for this controller and conduct simulations to study the adaptation’s impact on chattering. Our work exemplifies one approach to adopt the back-propagation algorithm in control applications.
期刊介绍:
International Journal of Control, Automation and Systems is a joint publication of the Institute of Control, Robotics and Systems (ICROS) and the Korean Institute of Electrical Engineers (KIEE).
The journal covers three closly-related research areas including control, automation, and systems.
The technical areas include
Control Theory
Control Applications
Robotics and Automation
Intelligent and Information Systems
The Journal addresses research areas focused on control, automation, and systems in electrical, mechanical, aerospace, chemical, and industrial engineering in order to create a strong synergy effect throughout the interdisciplinary research areas.