从穿心莲(Burm. f)中提取的三种二萜内酯的体外、体内抗癌评估和新型脂质体封装效率

IF 1.7 3区 化学 Q3 CHEMISTRY, ORGANIC Current Organic Chemistry Pub Date : 2024-05-27 DOI:10.2174/0113852728296753240507065455
Tran Le Thi Thanh, Trinh Thi Diep, Nguyen Thi To Uyen, Tran Nguyen Minh An, Le Van Tan
{"title":"从穿心莲(Burm. f)中提取的三种二萜内酯的体外、体内抗癌评估和新型脂质体封装效率","authors":"Tran Le Thi Thanh, Trinh Thi Diep, Nguyen Thi To Uyen, Tran Nguyen Minh An, Le Van Tan","doi":"10.2174/0113852728296753240507065455","DOIUrl":null,"url":null,"abstract":":: Three compounds from Andrographis paniculata (Burm. f) Nees leaf were isolated and identified using 1H, 13C, 2D-NMR, and HR-MS techniques for the first time. Compound 3,19-Di-Oacetylandrographolide (3,19-DAA) or (4) is produced by acetylating compound (2). Compounds (2) and (4) have been investigated for their cytotoxic effects on three human cancer cell lines (SK-LU-1, Hela, and HepG2) using the MTT method. Compound (4) demonstrated significant cytotoxicity against all three cancer cell lines, with IC50 values ranging from 8.38 to 10.15 μM. This represents an increase in cytotoxicity of 2.67 to 3.12-fold compared to compound (2). One way to deal with the problem of low water solubility is by encapsulating (4) into liposomes using a thin-film hydration technique. The optimal conditions for maximizing encapsulation efficiency involve molar ratios of phosphatidylcholine, 3,19-DAA, and cholesterol at 4:1:1. Encapsulating compound (4) within nanoscale liposomes increases its water solubility compared to the free form of compound (4). Pose 324 of compound (4) demonstrated the best conformation among 500 docking conformations when docked to enzyme 1T8I in a silico docking study. The free Gibbs energy and inhibition constant were determined to be -7.09 Kcal/mol and 6.32 μM, respectively. These values help elucidate the strong interaction between compound (4) and the enzyme in the ligand interaction model. The molecular dynamics simulation using Desmond software in the Linux environment was conducted for a duration of 0 to 100 nanoseconds on the complex formed by pose 324 and 1T8I. The results showed effective interactions within the complex, with stability observed from 0 to 60 nanoseconds. Throughout the simulation, specific amino acids such as Ala 499 (involved in 90% of the simulation time with hydrogen bonding via a water bridge) and Thr 501 (involved in 50% of the simulation time with one hydrogen bond via a water bridge) were found to play significant roles. The majority of torsion bondings are C-O bondings in the acetyl group of compound (4), with torsion energy values of 13.47 Kcal/mol. Carbon atom C-29 at position 324 exhibits the highest fluctuation.","PeriodicalId":10926,"journal":{"name":"Current Organic Chemistry","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three Diterpene Lactones from Andrographis paniculata (Burm. f) Nees In Vitro, In Silico Assessment of the anticancer and Novel Liposomal Encapsulation Efficiency\",\"authors\":\"Tran Le Thi Thanh, Trinh Thi Diep, Nguyen Thi To Uyen, Tran Nguyen Minh An, Le Van Tan\",\"doi\":\"10.2174/0113852728296753240507065455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\":: Three compounds from Andrographis paniculata (Burm. f) Nees leaf were isolated and identified using 1H, 13C, 2D-NMR, and HR-MS techniques for the first time. Compound 3,19-Di-Oacetylandrographolide (3,19-DAA) or (4) is produced by acetylating compound (2). Compounds (2) and (4) have been investigated for their cytotoxic effects on three human cancer cell lines (SK-LU-1, Hela, and HepG2) using the MTT method. Compound (4) demonstrated significant cytotoxicity against all three cancer cell lines, with IC50 values ranging from 8.38 to 10.15 μM. This represents an increase in cytotoxicity of 2.67 to 3.12-fold compared to compound (2). One way to deal with the problem of low water solubility is by encapsulating (4) into liposomes using a thin-film hydration technique. The optimal conditions for maximizing encapsulation efficiency involve molar ratios of phosphatidylcholine, 3,19-DAA, and cholesterol at 4:1:1. Encapsulating compound (4) within nanoscale liposomes increases its water solubility compared to the free form of compound (4). Pose 324 of compound (4) demonstrated the best conformation among 500 docking conformations when docked to enzyme 1T8I in a silico docking study. The free Gibbs energy and inhibition constant were determined to be -7.09 Kcal/mol and 6.32 μM, respectively. These values help elucidate the strong interaction between compound (4) and the enzyme in the ligand interaction model. The molecular dynamics simulation using Desmond software in the Linux environment was conducted for a duration of 0 to 100 nanoseconds on the complex formed by pose 324 and 1T8I. The results showed effective interactions within the complex, with stability observed from 0 to 60 nanoseconds. Throughout the simulation, specific amino acids such as Ala 499 (involved in 90% of the simulation time with hydrogen bonding via a water bridge) and Thr 501 (involved in 50% of the simulation time with one hydrogen bond via a water bridge) were found to play significant roles. The majority of torsion bondings are C-O bondings in the acetyl group of compound (4), with torsion energy values of 13.47 Kcal/mol. Carbon atom C-29 at position 324 exhibits the highest fluctuation.\",\"PeriodicalId\":10926,\"journal\":{\"name\":\"Current Organic Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Organic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.2174/0113852728296753240507065455\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2174/0113852728296753240507065455","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

摘要

::首次使用 1H、13C、2D-NMR 和 HR-MS 技术从穿心莲叶中分离并鉴定了三种化合物。化合物 3,19-Di-Oacetylandrographolide (3,19-DAA) 或 (4) 由化合物 (2) 乙酰化生成。采用 MTT 法研究了化合物 (2) 和 (4) 对三种人类癌细胞系(SK-LU-1、Hela 和 HepG2)的细胞毒性作用。化合物 (4) 对所有三种癌细胞株都具有显著的细胞毒性,IC50 值在 8.38 到 10.15 μM 之间。与化合物(2)相比,细胞毒性增加了 2.67 至 3.12 倍。解决水溶性低问题的一种方法是利用薄膜水合技术将(4)封装到脂质体中。最大化封装效率的最佳条件是磷脂酰胆碱、3,19-DAA 和胆固醇的摩尔比为 4:1:1。与游离态化合物(4)相比,将化合物(4)封装在纳米级脂质体中可提高其水溶性。在与酶 1T8I 的硅对接研究中,当化合物(4)与酶 1T8I 进行对接时,其姿势 324 是 500 个对接构象中的最佳构象。经测定,其自由吉布斯能和抑制常数分别为 -7.09 Kcal/mol 和 6.32 μM。这些数值有助于阐明配体相互作用模型中化合物 (4) 与酶之间的强相互作用。在 Linux 环境下使用 Desmond 软件对 pose 324 和 1T8I 形成的复合物进行了 0 至 100 纳秒的分子动力学模拟。结果表明,复合物内的相互作用非常有效,从 0 到 60 纳秒都保持稳定。在整个模拟过程中,发现特定的氨基酸,如 Ala 499(通过水桥氢键参与了 90% 的模拟时间)和 Thr 501(通过水桥氢键参与了 50% 的模拟时间)发挥了重要作用。大部分扭转键是化合物 (4) 乙酰基上的 C-O 键,扭转能值为 13.47 Kcal/mol。位于 324 位的碳原子 C-29 波动最大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Three Diterpene Lactones from Andrographis paniculata (Burm. f) Nees In Vitro, In Silico Assessment of the anticancer and Novel Liposomal Encapsulation Efficiency
:: Three compounds from Andrographis paniculata (Burm. f) Nees leaf were isolated and identified using 1H, 13C, 2D-NMR, and HR-MS techniques for the first time. Compound 3,19-Di-Oacetylandrographolide (3,19-DAA) or (4) is produced by acetylating compound (2). Compounds (2) and (4) have been investigated for their cytotoxic effects on three human cancer cell lines (SK-LU-1, Hela, and HepG2) using the MTT method. Compound (4) demonstrated significant cytotoxicity against all three cancer cell lines, with IC50 values ranging from 8.38 to 10.15 μM. This represents an increase in cytotoxicity of 2.67 to 3.12-fold compared to compound (2). One way to deal with the problem of low water solubility is by encapsulating (4) into liposomes using a thin-film hydration technique. The optimal conditions for maximizing encapsulation efficiency involve molar ratios of phosphatidylcholine, 3,19-DAA, and cholesterol at 4:1:1. Encapsulating compound (4) within nanoscale liposomes increases its water solubility compared to the free form of compound (4). Pose 324 of compound (4) demonstrated the best conformation among 500 docking conformations when docked to enzyme 1T8I in a silico docking study. The free Gibbs energy and inhibition constant were determined to be -7.09 Kcal/mol and 6.32 μM, respectively. These values help elucidate the strong interaction between compound (4) and the enzyme in the ligand interaction model. The molecular dynamics simulation using Desmond software in the Linux environment was conducted for a duration of 0 to 100 nanoseconds on the complex formed by pose 324 and 1T8I. The results showed effective interactions within the complex, with stability observed from 0 to 60 nanoseconds. Throughout the simulation, specific amino acids such as Ala 499 (involved in 90% of the simulation time with hydrogen bonding via a water bridge) and Thr 501 (involved in 50% of the simulation time with one hydrogen bond via a water bridge) were found to play significant roles. The majority of torsion bondings are C-O bondings in the acetyl group of compound (4), with torsion energy values of 13.47 Kcal/mol. Carbon atom C-29 at position 324 exhibits the highest fluctuation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Organic Chemistry
Current Organic Chemistry 化学-有机化学
CiteScore
3.70
自引率
7.70%
发文量
76
审稿时长
1 months
期刊介绍: Current Organic Chemistry aims to provide in-depth/mini reviews on the current progress in various fields related to organic chemistry including bioorganic chemistry, organo-metallic chemistry, asymmetric synthesis, heterocyclic chemistry, natural product chemistry, catalytic and green chemistry, suitable aspects of medicinal chemistry and polymer chemistry, as well as analytical methods in organic chemistry. The frontier reviews provide the current state of knowledge in these fields and are written by chosen experts who are internationally known for their eminent research contributions. The Journal also accepts high quality research papers focusing on hot topics, highlights and letters besides thematic issues in these fields. Current Organic Chemistry should prove to be of great interest to organic chemists in academia and industry, who wish to keep abreast with recent developments in key fields of organic chemistry.
期刊最新文献
Di-tert-butyl Peroxide (DTBP)-Promoted Heterocyclic Ring Construction A New Route for the Synthesis of Trichloromethyl-1H-Benzo[d]imidazole and (1,2,3- Triazol)-1H-Benzo[d]imidazole Derivatives via Copper-Catalyzed N-Arylation and Huisgen Reactions Recent Advance in the Reductive Heck Cyclization for the Formation of Five to Nine Member Rings Catalytic Syntheses of Pyrano[3,2-C]Quinolone and -Quinoline Derivatives and their Potential Therapeutic Agents Recent Advances in the Synthesis and Applications of Partially Protected N-Glycosylamines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1