基于动态加权慢特征分析的高速列车运行齿轮系统故障检测

IF 2.5 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS International Journal of Control Automation and Systems Pub Date : 2024-05-28 DOI:10.1007/s12555-023-0059-6
Chao Cheng, Xin Wang, Shuiqing Xu, Ke Feng, Hongtian Chen
{"title":"基于动态加权慢特征分析的高速列车运行齿轮系统故障检测","authors":"Chao Cheng, Xin Wang, Shuiqing Xu, Ke Feng, Hongtian Chen","doi":"10.1007/s12555-023-0059-6","DOIUrl":null,"url":null,"abstract":"<p>The running gear system provides the safety guarantee for the normal operation of high-speed trains. The massive historical data in the system can be used for fault detection and diagnosis. This data inevitably exists redundancy, which makes the valuable data not fully utilized in the process of extracting latent variables. In this paper, to make full and effective use of historical data, a dynamic weighted slow feature analysis (DWSFA) method is proposed, which can detect slow-change faults in the running gear system of high-speed trains. The proposed method based on basis functions can reduce the amount of time lags required for the process of extracting latent variables, and it obtains the better fault detection (FD) performance. The effectiveness of the proposed method is verified via a running gear system of high-speed train.</p>","PeriodicalId":54965,"journal":{"name":"International Journal of Control Automation and Systems","volume":"31 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Weighted Slow Feature Analysis-based Fault Detection for Running Gear Systems of High-speed Trains\",\"authors\":\"Chao Cheng, Xin Wang, Shuiqing Xu, Ke Feng, Hongtian Chen\",\"doi\":\"10.1007/s12555-023-0059-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The running gear system provides the safety guarantee for the normal operation of high-speed trains. The massive historical data in the system can be used for fault detection and diagnosis. This data inevitably exists redundancy, which makes the valuable data not fully utilized in the process of extracting latent variables. In this paper, to make full and effective use of historical data, a dynamic weighted slow feature analysis (DWSFA) method is proposed, which can detect slow-change faults in the running gear system of high-speed trains. The proposed method based on basis functions can reduce the amount of time lags required for the process of extracting latent variables, and it obtains the better fault detection (FD) performance. The effectiveness of the proposed method is verified via a running gear system of high-speed train.</p>\",\"PeriodicalId\":54965,\"journal\":{\"name\":\"International Journal of Control Automation and Systems\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Control Automation and Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s12555-023-0059-6\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Control Automation and Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12555-023-0059-6","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

传动系统为高速列车的正常运行提供了安全保障。系统中的大量历史数据可用于故障检测和诊断。这些数据不可避免地存在冗余,使得在提取潜变量的过程中,宝贵的数据得不到充分利用。为了充分有效地利用历史数据,本文提出了一种动态加权慢特征分析(DWSFA)方法,可以检测高速列车运行齿轮系统中的慢变故障。所提出的基于基函数的方法可以减少提取潜变量过程所需的时滞量,并获得更好的故障检测(FD)性能。通过高速列车运行齿轮系统验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic Weighted Slow Feature Analysis-based Fault Detection for Running Gear Systems of High-speed Trains

The running gear system provides the safety guarantee for the normal operation of high-speed trains. The massive historical data in the system can be used for fault detection and diagnosis. This data inevitably exists redundancy, which makes the valuable data not fully utilized in the process of extracting latent variables. In this paper, to make full and effective use of historical data, a dynamic weighted slow feature analysis (DWSFA) method is proposed, which can detect slow-change faults in the running gear system of high-speed trains. The proposed method based on basis functions can reduce the amount of time lags required for the process of extracting latent variables, and it obtains the better fault detection (FD) performance. The effectiveness of the proposed method is verified via a running gear system of high-speed train.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Control Automation and Systems
International Journal of Control Automation and Systems 工程技术-自动化与控制系统
CiteScore
5.80
自引率
21.90%
发文量
343
审稿时长
8.7 months
期刊介绍: International Journal of Control, Automation and Systems is a joint publication of the Institute of Control, Robotics and Systems (ICROS) and the Korean Institute of Electrical Engineers (KIEE). The journal covers three closly-related research areas including control, automation, and systems. The technical areas include Control Theory Control Applications Robotics and Automation Intelligent and Information Systems The Journal addresses research areas focused on control, automation, and systems in electrical, mechanical, aerospace, chemical, and industrial engineering in order to create a strong synergy effect throughout the interdisciplinary research areas.
期刊最新文献
The Dynamical Model and the Slithering Controller of Continuous Snakelike Robot on Smooth Surface Adaptive Back-stepping Control of Servo Systems With Asymmetric Dead Zone Optimal Stealthy Attack With Side Information Under the Energy Constraint on Remote State Estimation Finite-time Stabilization of Fractional-order Impulsive Switched Systems With Saturated Control Input Tracking Control Design for a Bilinear Control System With Unstable and Uncertain Internal Dynamics Using Adaptive Backstepping
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1