{"title":"具有时变延迟和未知初始状态的受约束纯反馈系统的自适应有限时间跟踪控制","authors":"Tian Xu, Yuxiang Wu","doi":"10.1007/s12555-022-1206-1","DOIUrl":null,"url":null,"abstract":"<p>This paper investigates the adaptive finite-time tracking control problem for a class of constrained pure-feedback systems with time-varying delays and unknown initial states. By designing a novel shifting function and using the state transformation, there is no need to know the initial value of states. Instead of employing barrier Lyapunov functions, the modified nonlinear state-dependent functions are constructed to solve the deferred state constraints, avoiding the feasibility conditions on virtual controllers. The effect of time-varying delays is eliminated by combining the radial basis function neural networks with a finite covering lemma, and the requirement that the derivative of time-varying delays should be less than one in Lyapunov-Krasovskii functional method is relaxed. The asymmetric saturation nonlinearity is solved by designing an auxiliary system. The system coordinate transformation is employed to solve the design difficulty brought by the nonaffine structure. Then, an adaptive finite-time tracking control scheme is developed based on the command filtered backstepping technique. The developed control scheme can not only make all states satisfy the asymmetric time-varying constraints after a predefined time, but also guarantee the finite-time tracking performance. Finally, simulation examples are given to demonstrate the effectiveness of the proposed scheme.</p>","PeriodicalId":54965,"journal":{"name":"International Journal of Control Automation and Systems","volume":"59 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Finite-time Tracking Control for Constrained Pure-feedback Systems With Time-varying Delays and Unknown Initial States\",\"authors\":\"Tian Xu, Yuxiang Wu\",\"doi\":\"10.1007/s12555-022-1206-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper investigates the adaptive finite-time tracking control problem for a class of constrained pure-feedback systems with time-varying delays and unknown initial states. By designing a novel shifting function and using the state transformation, there is no need to know the initial value of states. Instead of employing barrier Lyapunov functions, the modified nonlinear state-dependent functions are constructed to solve the deferred state constraints, avoiding the feasibility conditions on virtual controllers. The effect of time-varying delays is eliminated by combining the radial basis function neural networks with a finite covering lemma, and the requirement that the derivative of time-varying delays should be less than one in Lyapunov-Krasovskii functional method is relaxed. The asymmetric saturation nonlinearity is solved by designing an auxiliary system. The system coordinate transformation is employed to solve the design difficulty brought by the nonaffine structure. Then, an adaptive finite-time tracking control scheme is developed based on the command filtered backstepping technique. The developed control scheme can not only make all states satisfy the asymmetric time-varying constraints after a predefined time, but also guarantee the finite-time tracking performance. Finally, simulation examples are given to demonstrate the effectiveness of the proposed scheme.</p>\",\"PeriodicalId\":54965,\"journal\":{\"name\":\"International Journal of Control Automation and Systems\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Control Automation and Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s12555-022-1206-1\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Control Automation and Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12555-022-1206-1","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Adaptive Finite-time Tracking Control for Constrained Pure-feedback Systems With Time-varying Delays and Unknown Initial States
This paper investigates the adaptive finite-time tracking control problem for a class of constrained pure-feedback systems with time-varying delays and unknown initial states. By designing a novel shifting function and using the state transformation, there is no need to know the initial value of states. Instead of employing barrier Lyapunov functions, the modified nonlinear state-dependent functions are constructed to solve the deferred state constraints, avoiding the feasibility conditions on virtual controllers. The effect of time-varying delays is eliminated by combining the radial basis function neural networks with a finite covering lemma, and the requirement that the derivative of time-varying delays should be less than one in Lyapunov-Krasovskii functional method is relaxed. The asymmetric saturation nonlinearity is solved by designing an auxiliary system. The system coordinate transformation is employed to solve the design difficulty brought by the nonaffine structure. Then, an adaptive finite-time tracking control scheme is developed based on the command filtered backstepping technique. The developed control scheme can not only make all states satisfy the asymmetric time-varying constraints after a predefined time, but also guarantee the finite-time tracking performance. Finally, simulation examples are given to demonstrate the effectiveness of the proposed scheme.
期刊介绍:
International Journal of Control, Automation and Systems is a joint publication of the Institute of Control, Robotics and Systems (ICROS) and the Korean Institute of Electrical Engineers (KIEE).
The journal covers three closly-related research areas including control, automation, and systems.
The technical areas include
Control Theory
Control Applications
Robotics and Automation
Intelligent and Information Systems
The Journal addresses research areas focused on control, automation, and systems in electrical, mechanical, aerospace, chemical, and industrial engineering in order to create a strong synergy effect throughout the interdisciplinary research areas.