海岸回填砂浅层盾构隧道工作面被动破坏特征试验研究

IF 2.9 3区 工程技术 Q2 ENGINEERING, CIVIL Frontiers of Structural and Civil Engineering Pub Date : 2024-05-29 DOI:10.1007/s11709-024-1059-1
Weifeng Qian, Ming Huang, Bingnan Wang, Chaoshui Xu, Yanfeng Hu
{"title":"海岸回填砂浅层盾构隧道工作面被动破坏特征试验研究","authors":"Weifeng Qian, Ming Huang, Bingnan Wang, Chaoshui Xu, Yanfeng Hu","doi":"10.1007/s11709-024-1059-1","DOIUrl":null,"url":null,"abstract":"<p>Face passive failure can severely damage existing structures and underground utilities during shallow shield tunneling, especially in coastal backfill sand. In this work, a series of laboratory model tests were developed and conducted to investigate such failure, for tunnels located at burial depth ratios for which <i>C/D</i> = 0.5, 0.8, 1, and 1.3. Support pressures, the evolution of failure processes, the failure modes, and the distribution of velocity fields were examined through model tests and numerical analyses. The support pressure in the tests first rose rapidly to the elastic limit and then gradually increased to the maximum value in all cases. The maximum support pressure decreased slightly in cases where <i>C/D</i> = 0.8, 1, and 1.3, but the rebound was insignificant where <i>C/D</i> = 0.5. In addition, the configuration of the failure mode with <i>C/D</i> = 0.5 showed a wedge-shaped arch, which was determined by the outcropping shear failure. The configuration of failure modes was composed of an arch and the inverted trapezoid when <i>C/D</i> = 0.8, 1, and 1.3, in which the mode was divided into lower and upper failure zones.</p>","PeriodicalId":12476,"journal":{"name":"Frontiers of Structural and Civil Engineering","volume":"7 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental study of face passive failure features of a shallow shield tunnel in coastal backfill sand\",\"authors\":\"Weifeng Qian, Ming Huang, Bingnan Wang, Chaoshui Xu, Yanfeng Hu\",\"doi\":\"10.1007/s11709-024-1059-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Face passive failure can severely damage existing structures and underground utilities during shallow shield tunneling, especially in coastal backfill sand. In this work, a series of laboratory model tests were developed and conducted to investigate such failure, for tunnels located at burial depth ratios for which <i>C/D</i> = 0.5, 0.8, 1, and 1.3. Support pressures, the evolution of failure processes, the failure modes, and the distribution of velocity fields were examined through model tests and numerical analyses. The support pressure in the tests first rose rapidly to the elastic limit and then gradually increased to the maximum value in all cases. The maximum support pressure decreased slightly in cases where <i>C/D</i> = 0.8, 1, and 1.3, but the rebound was insignificant where <i>C/D</i> = 0.5. In addition, the configuration of the failure mode with <i>C/D</i> = 0.5 showed a wedge-shaped arch, which was determined by the outcropping shear failure. The configuration of failure modes was composed of an arch and the inverted trapezoid when <i>C/D</i> = 0.8, 1, and 1.3, in which the mode was divided into lower and upper failure zones.</p>\",\"PeriodicalId\":12476,\"journal\":{\"name\":\"Frontiers of Structural and Civil Engineering\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Structural and Civil Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11709-024-1059-1\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Structural and Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11709-024-1059-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

在浅层盾构隧道掘进过程中,特别是在沿海回填砂土中,工作面被动破坏会严重破坏现有结构和地下设施。在这项工作中,针对埋深比为 C/D=0.5、0.8、1 和 1.3 的隧道,开发并进行了一系列实验室模型试验,以研究这种破坏。通过模型试验和数值分析,对支撑压力、破坏过程的演变、破坏模式和速度场的分布进行了研究。在所有情况下,试验中的支撑压力首先迅速上升到弹性极限,然后逐渐上升到最大值。在 C/D=0.8、1 和 1.3 的情况下,最大支撑压力略有下降,但在 C/D=0.5 的情况下,回弹不明显。此外,C/D = 0.5 时的破坏模式构造呈楔形拱,这是由外露剪切破坏决定的。当 C/D=0.8、1 和 1.3 时,破坏模式的构造由拱形和倒梯形组成,其中模式分为下破坏区和上破坏区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental study of face passive failure features of a shallow shield tunnel in coastal backfill sand

Face passive failure can severely damage existing structures and underground utilities during shallow shield tunneling, especially in coastal backfill sand. In this work, a series of laboratory model tests were developed and conducted to investigate such failure, for tunnels located at burial depth ratios for which C/D = 0.5, 0.8, 1, and 1.3. Support pressures, the evolution of failure processes, the failure modes, and the distribution of velocity fields were examined through model tests and numerical analyses. The support pressure in the tests first rose rapidly to the elastic limit and then gradually increased to the maximum value in all cases. The maximum support pressure decreased slightly in cases where C/D = 0.8, 1, and 1.3, but the rebound was insignificant where C/D = 0.5. In addition, the configuration of the failure mode with C/D = 0.5 showed a wedge-shaped arch, which was determined by the outcropping shear failure. The configuration of failure modes was composed of an arch and the inverted trapezoid when C/D = 0.8, 1, and 1.3, in which the mode was divided into lower and upper failure zones.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.20
自引率
3.30%
发文量
734
期刊介绍: Frontiers of Structural and Civil Engineering is an international journal that publishes original research papers, review articles and case studies related to civil and structural engineering. Topics include but are not limited to the latest developments in building and bridge structures, geotechnical engineering, hydraulic engineering, coastal engineering, and transport engineering. Case studies that demonstrate the successful applications of cutting-edge research technologies are welcome. The journal also promotes and publishes interdisciplinary research and applications connecting civil engineering and other disciplines, such as bio-, info-, nano- and social sciences and technology. Manuscripts submitted for publication will be subject to a stringent peer review.
期刊最新文献
An artificial neural network based deep collocation method for the solution of transient linear and nonlinear partial differential equations Bibliographic survey and comprehensive review on mechanical and durability properties of microorganism based self-healing concrete Seismic response of pile-supported structures considering the coupling of inertial and kinematic interactions in different soil sites An isogeometric approach for nonlocal bending and free oscillation of magneto-electro-elastic functionally graded nanobeam with elastic constraints Shaking table test on a tunnel-group metro station in rock site under harmonic excitation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1